
Agilent Technologies

Agilent
VnmrJ 4 User
Programming

Reference Guide

Notices
© Agilent Technologies, Inc. 2013

No part of this manual may be reproduced
in any form or by any means (including
electronic storage and retrieval or transla-
tion into a foreign language) without prior
agreement and written consent from
Agilent Technologies, Inc. as governed by
United States and international copyright
laws.

Manual Part Number

G7446-90520

Edition

Revision A, March 2013

This guide is valid for 4.0 and 4.0i revisions
of the Agilent VnmrJ software, until super-
seded.

Printed in USA

Agilent Technologies, Inc.
5301 Stevens Creek Boulevard
Santa Clara, CA 95051 USA

Warranty

The material contained in this docu-
ment is provided “as is,” and is sub-
ject to being changed, without notice,
in future editions. Further, to the max-
imum extent permitted by applicable
law, Agilent disclaims all warranties,
either express or implied, with regard
to this manual and any information
contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a par-
ticular purpose. Agilent shall not be
liable for errors or for incidental or
consequential damages in connection
with the furnishing, use, or perfor-
mance of this document or of any
information contained herein. Should
Agilent and the user have a separate
written agreement with warranty
terms covering the material in this
document that conflict with these
terms, the warranty terms in the sep-
arate agreement shall control.

Technology Licenses

The hardware and/or software described in
this document are furnished under a
license and may be used or copied only in
accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of
a U.S. Government prime contract or sub-
contract, Software is delivered and
licensed as “Commercial computer soft-
ware” as defined in DFAR 252.227-7014
(June 1995), or as a “commercial item” as
defined in FAR 2.101(a) or as “Restricted
computer software” as defined in FAR
52.227-19 (June 1987) or any equivalent
agency regulation or contract clause. Use,
duplication or disclosure of Software is
subject to Agilent Technologies’ standard
commercial license terms, and non-DOD
Departments and Agencies of the U.S. Gov-
ernment will receive no greater than
Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Govern-
ment users will receive no greater than
Limited Rights as defined in FAR 52.227-14

(June 1987) or DFAR 252.227-7015 (b)(2)
(November 1995), as applicable in any
technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a haz-
ard. It calls attention to an operat-
ing procedure, practice, or the like
that, if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in personal injury or death. Do not
proceed beyond a WARNING
notice until the indicated condi-
tions are fully understood and met.

VnmrJ 4 User Programming 3

Contents

1 MAGICAL II Programming

Working with Macros 12

Writing a macro 12
Executing a macro 14
Transferring macro output 15
Loading macros into memory 16

Programming with MAGICAL 18

Tokens 18
Variable types 23
Arrays 26
Input arguments 30
Name replacement 31
Conditional statements 31
Loops 32
Macro length and termination 33
Command and macro tracing 34

Relevant VnmrJ Commands 35

Spectral analysis tools 35
Input/Output tools 37
Regression and curve fitting 39
Mathematical functions 40
Creating, modifying, and displaying macros 41
Miscellaneous tools 43

2 Pulse-Sequence Programming

Overview of Pulse-Sequence Programming 50

Overview of pulse-sequence execution 50
Compiling a pulse sequence with the PSG 51
Troubleshooting a new pulse sequence 54
Creating a parameter table for a new sequence 55
C framework for pulse sequences 56
Global PSG and real-time variables in multidimensional arrays 59
Assigning transmitters and receivers 60
Customizing the PSG software 62

4 VnmrJ 4 User Programming

Pulse-Sequence Statements 64

Creating a time delay 64
Assigning transmitters and receivers to channels 65
Transmitter pulses 66
Pulsing channels simultaneously 69
Setting quadrature phase shifts 71
Setting small-angle phase shifts 72
Controlling the frequency offset 73
Controlling the transmitter power 74
Explicit transmitter gating 77
Transmitter blanking and unblanking 78
The status statements 80
Receiver gating 81
Interfacing to external user devices 82

Real-Time Control of Pulse Sequences 83

Real-time integer variables and constants 83
Calculating with real-time integer math 84
Real-time loops and conditionals 87
Real-time integer tables 90
The format of a table file 93

Shaped Pulses and Waveforms 95

Executing shaped pulses 95
Calculation of shaped pulses 98
Programmed waveforms for decoupling 99
Waveforms with an automatic frequency offset 101
Using spinlock pulses 102
Calculation of programmed waveforms 103
Calculating gradient shapes 104
Statements that create shape, waveform and gradient files 105
Waveform interpolation 106

Programming for Acquisition Control 110

Implicit acquisition 110
Standard acquisition with the VNMRS digital receiver 110
Setting the receiver phase 112
Setting the receiver offset 112
Programming explicit acquisition 112
Windowed acquisition 116
Acquisition with multiple FIDS 119

Multidimensional NMR and Arrays 121

Variables for nD dimensions 121
Compressed arrays and nD dimensions 123
Switchable loops for nD imaging experiments 123

VnmrJ 4 User Programming 5

Arrayed data acquisition 125
Managing arrays 126
Multidimensional phases 127

Syntax for Controlling Parallel Channels 130

Synchronous Timing Syntax 130
A parallelstart – parallelend Section 130
Looping in Parallel Sections 134
Allowed Statements and Calculation in a Parallel Section 136
Programming the Receiver and Gradients 137
The nowait Attribute 138
Waveform Control with obsprgon-obsprgoff 139

Parameters and Variables 141

Categories of parameters and variables 141
Statements used to handle parameters 142

PSG Variables 145

Global PSG Variables 145
Imaging and Other Variables 149

Pulse Sequence Output 155

Output messages 155
Pulse sequence display 157

Setting the Amplitude, Phase, and Gate from Tables 159

Gradient Control for PFG and Imaging 161

Single-axis gradient control for spectroscopy 163
Shaped gradients with nowait capability 165
Creating a gradient table 165
Controlling magic angle gradients 166
Oblique and phase-encoded-oblique gradients for imaging 166
Controlling slice-selective RF shaped pulses for imaging 167
Controlling lock field correction 169

3 Pulse Sequence Statement Reference

Pulse Sequence Statements 172

A 177

C 181

D 187

E, F 250

G 256

H 261

I 263

6 VnmrJ 4 User Programming

K 273

L 275

M 278

O 285

P 298

R 328

S 342

T 375

U 383

V 387

W 400

X 401

Z 404

4 Linux Level Programming

Linux and VnmrJ 406

Linux Reference Guide 407

Command entry 407
File names 408
File handling commands 408
Directory names 408
Directory handling commands 408
Text commands 409
Other commands 409
Special characters 410

Linux Commands Accessible from VnmrJ 411

Opening a text editor from VnmrJ 411
Opening a shell from VnmrJ 411

Background VNMR 412

Running VNMR Command as a Linux background task 412
Running VNMR processing in the background 413

Shell Programming 414

Shell variables and control formats 414
Shell scripts 414

Data backup under Linux 416

General considerations 416
Data backup on CDs/DVDs 417

VnmrJ 4 User Programming 7

Installation of a second hard disk 419
Data mirroring using VnmrJ tools 423
Automatic data backup using rsync 424
Backup on a second hard disk 426
Backup on a remote mounted filesystem 428
Backup on a remote computer via Secure Shell (ssh) 432

5 Parameters and Data

VnmrJ Data Files 440

Binary data files 440
Data file structures 442
VnmrJ use of binary data files 447
Storing multiple traces 448
Header and data display 450
Binary files in VnmrJ and byte order 450

FDF (Flexible Data Format) Files 452

File structures and naming conventions 452
File format 453
Header parameters 454
Transformations 457
Creating FDF files 457
Splitting FDF files 458

Reformatting Data for Processing 459

Standard and compressed formats 460
Compress or decompress data 461
Move and reverse data 461
Table convert data 462
Reformatting spectra 462

Creating and Modifying Parameters 464

Parameter types and trees 464
Tools for working with parameter trees 465
Format of a stored parameter 468

Modifying Parameter Displays in VNMR 473

Display template 473
Conditional and arrayed displays 475
Output format 477

Modules 478

Creating modules 478
Viewing modules parameters 479
Module example—Och_adiabatic 479

User-Written Weighting Functions 480

8 VnmrJ 4 User Programming

Writing a weighting function 481
Compiling the weighting function 482

User-Written 484

FID files 484

6 User Space Customization

Customize User Space with dousermacro 488

Customizing Default Experiment Parameters using user<pslabel> 489

Customizing Output - Plotting 490

7 Panels, Toolbars, and Menus

Parameter Panel, Toolbar, and Menu Properties 494

Using the Panel Editor 495

Starting the panel editor 495
Editing existing panel elements 497
Adding and removing panel elements 499
Using the Item Editor 501
Adding user-defined sampletags 502
Saving panel changes 504
Exiting the Panel Editor 506

Panel Elements 508

Element style 508
Panel element attributes 508
Panel elements 510
Advanced panel elements 527

Creating a New Panel 534

Writing commands 534
Creating a new panel layout 534
Creating a new page 535
Defining and populating a page 536
Saving and retrieving a panel element 536
Files associated with panels 537
Sizing panels 539

Panel Style Guidelines 540

Graphical Toolbar Menus 545

Editing the Toolbar menu 545
Graphics toolbar parameters 545
Icons 546
Menu file description example, dconi 546

VnmrJ 4 User Programming 9

A Status Codes

Status Codes 554

10 VnmrJ 4 User Programming

11

Agilent VnmrJ 4 User Programming
Reference Guide

Agilent Technologies

1
MAGICAL II Programming

Working with Macros 12

Programming with MAGICAL 18

Relevant VnmrJ Commands 35

Many actions are performed multiple times on an NMR
spectrometer, daily. To make these actions easier for the
user, the VnmrJ software incorporates a high- level macro
programming language designed for NMR called the NMR
language, MAGICAL II (MAGnetics Instrument Control and
Analysis Language, version II - referred to as MAGICAL in
this chapter). Many commands used in VnmrJ are in fact
macros (see /vnmr/maclib).

12 VnmrJ 4 User Programming

1 MAGICAL II Programming

Working with Macros

• Writing a macro

• Executing a macro

• Transferring macro output

• Loading macros into memory

A macro is a user- defined command that can duplicate a
long series of commands and parameter changes that need
to be entered one after another. For example, to plot a
spectrum, a scale under the spectrum, and the parameters
on a page, the following sequence of commands is required:
pl
pscale
ppa
page

A macro called plot, containing the aforementioned
commands, can be written. Consider another example. To
routinely plot 2D spectra using certain parameters, a macro
called plot_2d can be written using the following sequence
of commands:
wc=160
sc=20
wc2=160
sc2=20
pcon(10,1.4)
page

MAGICAL provides an entire series of programming tools,
such as if statements and loops that can be used as part of
macros. MAGICAL also provides other NMR- related tools,
which provide access to NMR information such as peak
heights, integrals, and spectral regions. Using these two sets
of tools, NMR algorithms are easily implemented with
MAGICAL.

Writing a macro
Consider the following scenario. You need to locate the
largest peak in a spectrum in which the peaks may be
positive or negative (such as an APT spectrum), and adjust
the vertical scale of the spectrum so that the tallest peak is
180 mm high. The following macro (or MAGICAL program),
which we call vsadj, illustrates how the MAGICAL tools can
be used to quickly and simply find a solution:

"vsadj --- Adjust scale of spectrum"

peak:$height,$frequency "Find largest peak"

MAGICAL II Programming 1

VnmrJ 4 User Programming 13

As written, the macro vsadj contains four lines:

The content enclosed in double- quotation marks (the first
line and parts of other lines) are comments. MAGICAL
permits comments, and as a good programming practice, this
example is filled with comments to explain the macro.

• The second line of the macro ("peak:$height,...")
illustrates the ability of MAGICAL to extract spectral
information. The peak command looks through the
spectrum and returns to the user the height and
frequency of the tallest peak in the spectrum, which are
then stored (in this example) in temporary variables
named $height and $frequency.

• The third line of the macro ("if $height<0...")
illustrates that MAGICAL is a high- level programming
language, with conditional statements (for example, if...
then...), loops, etc. This particular line ensures that the
peak height we measure is always a positive value, which
is necessary for the calculation in the next line.

• The last line ("vs=180*vs...") illustrates the use of NMR
parameters (for example, vs sets the vertical scale) as
simple variables in our macro. This line accomplishes the
task of calculating a new value of vs that will make the
height of the tallest peak equal to 180 mm.

Part of the power of the MAGICAL macro language is its
ability to build on itself. For example, we can create
first- level macros from existing commands, second- level
macros from first- level macros and commands, and so on.
Consider the following scenario: we create a macro plot, we
might also create a macro setuph, another macro acquireh,
and yet another macro processh. Now we can create a
higher- level macro, H1, which is equivalent to setuph
acquireh processh plot. Another example is that we create
two more similar macros, C13 and APT. Now we can create a
higher- level macro HCAPT, equivalent to H1 C13 APT. At every
step, the power of the macro increases, without increasing
the complexity.

Many macros are part of the standard VnmrJ software.
These macros are discussed in the relevant chapters of the
manual Getting Started- processing macros are discussed
along with processing commands, acquisition setup macros
are discussed along with acquisition setup commands, and

if $height<0 then
$height=-$height endif

"If negative, make positive"

vs=180*vs/$height "Adjust the vertical scale"

14 VnmrJ 4 User Programming

1 MAGICAL II Programming

so on. Refer to the VnmrJ Command and Parameter
Reference for a concise description of standard macros. The
examples used here are instructive examples and do not
necessarily represent standard Agilent software.

Executing a macro

When any program is executed, the command interpreter
first checks if it is a standard VnmrJ command. If the
program is not a command, the command interpreter then
attempts to find a macro with the program name. Unlike a
built- in VnmrJ command, which is a built- in procedure
containing code that normally cannot be changed by users,
the code inside a macro is text that is accessible and can be
changed by users as needed.

If a VnmrJ command and a macro have the same name, the
VnmrJ command always takes precedence over a macro.
Consider the following example; there is a built- in VnmrJ
command named wft. If someone writes a macro also named
wft, then the macro wft will never get executed because the
VnmrJ command wft takes precedence. To get around this
restriction, the hidecommand command can be used to
rename a command so that a macro with the same name as
a command is executed instead of the built- in command. If
the user who wrote the wft macro enters
hidecommand('wft'), the command is renamed to Wft (first
letter made upper case) and the macro wft can be directly
executed. The new wft macro can access the hidden wft
built- in command by calling it with the name Wft. To go
back to executing the command wft first, enter
hidecommand('Wft').

VNMR supports “Application directories” or appdirs. An
Application directory is a place where VNMR will look for
maclib and other directories. A macro can exist in any of
the appdir maclibs, and the precedence is determined by the
order of the application directories. Generally, a user’s
vnmrsys directory is the appdir with the highest precedence,
so macros located in the user’s vnmrsys/maclib directory
will be found first.

For example, rt is a standard VNMR macro in the system
maclib. If a user puts a macro named rt in the user’s maclib,
the user’s rt macro takes precedence over the system rt
macro.

The which macro can search these locations and display the
information about locations that contain a macro. For

MAGICAL II Programming 1

VnmrJ 4 User Programming 15

example, entering which('rt') determines the location of the
macro rt.

The system macro directory /vnmr/maclib can be changed by
the system operator only, but the changes are available to all
users. Each user also has his or her own private macro
directory maclib in the user’s vnmrsys directory. These
macros take precedence over the system macros if a macro
of the same name exists in both directories. Thus, users can
modify a macro to their own needs without affecting the
operation of other users. If the command interpreter does
not find the macro, it displays an error message to the user

Macros are executed in exactly the same way as normal
system commands, including the possibility of accepting
optional arguments (shown by angled brackets "<...>"):

macroname<(argument1<,argument2,...>)>

Arguments passed to commands and macros can be
constants (for example, 5.0 and 'apt'), parameters and
variables (pw and $ht), or expressions (2*pw+5.0). Recursive
calls to procedures are allowed. Single quotes must be used
around constant strings.

Macros can also be executed in three other ways:

• When the VnmrJ program is first run, a system macro
bootup is run. This macro, in turn, runs a user macro
named login in the user’s local maclib directory if such
a macro exists.

• When any parameter x is entered, if that parameter has a
certain “protection bit” set (see Format of a Stored
Parameter), a macro by the name _x (that is, the name of
the parameter with an underline as a prefix) is executed.
For example, changing the value of sw executes the macro
_sw.

• Whenever parameters are retrieved with the rt, rtp, or
rtv commands, a macro named fixpar is executed.

Transferring macro output

Output from many commands and macros, in addition to
being displayed on the screen or placed in a file, can also be
transferred to any parameter or variable of the same type.
To receive the output of a program of this type, the program
name (and arguments, if any) are followed by a colon (:) and
one or more names of variables and parameters that are to

16 VnmrJ 4 User Programming

1 MAGICAL II Programming

take the output:

macroname<(arg1<,arg2,...>)>:variable1,variable2,...

For example, the command peak finds the height and
frequency of the tallest peak. Entering the command:
peak:r1,r2

results in r1 containing the height of the tallest peak and r2
containing its frequency. Therefore, entering the command
peak:$ht,cr

would set $ht equal to the height of the tallest peak and set
the cursor (parameter cr) equal to its frequency, and
therefore, would be the equivalent of a “tallest line”
command (similar to but different than the command nl to
position the cursor at the nearest line).

It is not necessary to receive all of the information. For
example, entering
peak:$peakht

puts the height of the tallest peak into the variable $peakht,
and does not save the information about the peak frequency.

The command that displays a line list, dll, also produces
one output—the number of lines. Entering
dll:$n

reads the number of lines into the variable $n. dll alone is
perfectly acceptable although the information about the
number of lines is then lost.

Loading macros into memory

Every time a macro is used, it is parsed before it is
executed. This parsing takes time. If a macro is used many
times or if a faster execution speed is required, the parsed
form of the macro, user or system, can be loaded into the
memory by the macrold command. When that macro is
executed, it runs substantially faster. One or more macros
can be “pre- loaded” to run automatically when VnmrJ is
started by inserting some macrold commands into your
login macro.

Macros are also loaded into memory by the macrovi or
macroedit commands to edit the macro. The only argument
in each is the name of the macro file; for example, enter
macrovi('pa') or macroedit('pa') if the macro name is
pa. The choice depends on the type of macro and the text
editor required:

MAGICAL II Programming 1

VnmrJ 4 User Programming 17

• For a user macro, use macrovi, a vi based editor.

• For a user macro from an editor, select macroedit.

• To edit a system macro, copy the macro to your personal
macro directory and edit it there with macrovi or
macroedit.

To select the editor for macroedit, set the operating
system’s (OS) variable vnmreditor to its name (vnmreditor
is set through the OS env command). A script for the editor
in the bin subdirectory of the VnmrJ system directory must
also exist. For example, to select Emacs, set
vnmreditor=emacs and have a script vnmr_emacs.

Several minor problems need to be considered while loading
macros into memory:

• These macros consume a small amount of memory. In
memory- critical situations, remove one or more macros
from memory using the purge<(file)> command, where
file is the name of the macro file to be removed from
memory. Entering purge with no arguments removes all
macros loaded into memory.

• A macro loaded in memory and modified from a separate
terminal window leaves the copy in memory as
unchanged. Executing this memory causes VNMR to
execute the old copy in memory. Use macrovi or
macroedit to edit the macro, or if the macro has been
edited in another window, then use macrold to replace
the macro loaded in memory with the new version.

A personal macro created with the same name as a system
macro already in memory requires the use of purge to clear
the system macro from memory so that the personal version
in the maclib directory can be subsequently executed.

Performance improves if a macro inside a macro loop is
called before entering the loop and executing the loop.
Remove the called macro from memory with the purge
command after exiting the loop.

CAUTION The purge command with no arguments should never be called
from a macro, because it will remove all macros from memory,
including the macro containing purge. Furthermore, purge, where
the argument is the name of the macro containing the purge
command, should never be called.

18 VnmrJ 4 User Programming

1 MAGICAL II Programming

Programming with MAGICAL

• Tokens

• Variable Types

• Arrays

• Expressions

• Input Arguments

• Name Replacement

• Conditional Statements

• Loops

• Macro Length and Termination

• Command and Macro Tracing

MAGICAL has many features, including tokens, variables,
expressions, conditional statements, and loops. To program
in MAGICAL, you need to know the main features as
described in this section.

Tokens

A token is a character or characters that are considered by
the language as a single entity or unit. There are five classes
of tokens in MAGICAL: identifiers, reserved words,
constants, operators, and separators.

Identifiers

An identifier is the name of a command, macro, parameter,
or variable, and is a sequence of letters, digits, and the
special characters _ $ #. The underline _ is considered a
letter. Upper and lower case letters are different. The first
character of identifiers, except for temporary variable
identifiers, must be a letter. Temporary variable identifiers
start with the dollar- sign ($) character. Identifiers can be of
any length (within reason). Examples of identifiers are pcon,
_pw, or $height.

Reserved words

The identifiers listed in Table 1 Reserved words in MAGICAL
are reserved words and may not be used otherwise.
Reserved words are recognized in both upper and lower case
formats (for example, do not use either and or AND except as
a reserved word).

MAGICAL II Programming 1

VnmrJ 4 User Programming 19

Constants

Constants can be either floating or string.

• A floating constant consists of an integer part, a decimal
point, a fractional part, the letter E (or e) and, optionally,
a signed integer exponent. Both integer and fraction parts
consist of a sequence of digits. Either the integer part or
the fraction part (but not both) may be missing; similarly,
either the decimal point, or the E (or e) and the exponent
may be missing. Some examples are 1.37E- 3, 4e5, .2E2,
1.4, 5.

• A string constant is a sequence of characters surrounded
by single- quote characters ('...') or by backward
single- quote characters (`...`). 'This is a string' and
`This is a string` are examples of string constants.

To include a single- quote character in a string, place a
backslash character (\) before the single- quote character, for
example:
'This string isn\'t permissible without the backslash'

To include a backslash character in the string, place another
backslash before the backslash, for example:
'This string includes the backslash \\'

Alternatively, the two styles of single quote characters can
be used. If backward single quotes are used to delimit a
string, then single quotes can be placed directly within the
string, for example:
`This isn't a problem`

Or the single- quote styles can be exchanged, for example:
'This isn`t a problem'

The single quote style that initiates the string must also
terminate the string.

Table 1 Reserved words in MAGICAL

abort else not trunc

abortoff elseif or typeof

aborton endif repeat then

and endwhile return until

break if size while

do mod sqrt

20 VnmrJ 4 User Programming

1 MAGICAL II Programming

Operators

Table 2 lists the operators available in MAGICAL. Each
operator is placed in a group, and groups are shown in
order of precedence, with the highest group precedence
shown first. Within each group, operator precedence in
expressions is from left to right, except for the logical group,
in which the respective members are listed in order of
precedence.

Table 2 Order of operator precedence (highest first) in MAGICAL

Group Operation Description Example

special sqrt() square root a = sqrt(b)

trunc() truncation $3 = trunc(3.6)

typeof() return argument type if typeof('$1')
then...

size() return argument size r1 = size('d2')

unary - negative a = -5

multiplicative * multiplication a = 2 * c

/ division b = a / 2

% remainder $1 = 4 % 3

mod modulo $3 = 7 mod 4

additive + addition a = x + 4

- subtraction -b = y - sw

relational < less than if a < b then...

> greater than if a > b then...

<= less than or equal to if a <= b
then...

>= greater than or equal
to

if a >= b
then...

equality = equal to if a = b then...

<> not equal to if a <> b
then...

logical not negation if not (a=b)
then...

and logical and if r1 and r2
then...

MAGICAL II Programming 1

VnmrJ 4 User Programming 21

There are four “built- in” special operators:

• sqrt returns the square root of a real number.

• trunc truncates real numbers.

• typeof returns an identifier (0, or 1) for the type (real,
or string) of an argument. The typeof operator will abort
if the identifier does not exist.

• size returns the number of elements in an arrayed
parameter.

The unary, multiplicative, and additive operators apply only
to real variables. The + (addition) operator can also be used
with string variables to concatenate two strings together. The
mathematical operators can not be used with mixed variable
types.

If the variable is an array, the mathematical operators try to
do simple matrix arithmetic. If two matrices of the same size
are equated, added, subtracted, multiplied, divided, or one
matrix is taken as a modulus, each element of the first
matrix is operated on with the corresponding element of the
second. If two matrices of the same size are compared with
an and operator, the resulting Boolean is the AND of each
individual element. If two matrices of the same size are
ORed together, the resulting Boolean is the OR of each
individual element. If the two matrices have unequal sizes,
an error is thrown.

An arrayed variable cannot be operated on (added,
multiplied, etc.) by a single- valued constant or variable. For
example, if pw is an array of five values, pw=2*pw does not
double the value of each element of the array.

Comments

MAGICAL programming provides three ways to enter
comments:

or logical (inclusive) or
(true if one or both
conditions are true)

if (r1=2) or
(r2=4) then...

assignment = equal a = 3

Table 2 Order of operator precedence (highest first) in MAGICAL

Group Operation Description Example

22 VnmrJ 4 User Programming

1 MAGICAL II Programming

• Create a comment by putting characters between double
quotation marks ("..."), except when the double
quotation marks are in a literal string, for example,

'The word "and" is a reserved word'

Comments based on double quotation marks can appear
anywhere—at the beginning, middle, or end of a line—but
cannot span multiple lines. At the end of a comment,
place a second double quotation mark; otherwise, the
comment is automatically terminated at the end of a line.

• Create a single- line comment with two slash marks (//).
The comment starts with the // and ends on the line., for
example,

// This is a comment

As with the double quotation marks, // in a literal string
does not signify a comment. This type of comment is
often used for a brief description of the preceding
command, for example,

cdc // clear drift correction

• Create a single- line or multiple- lines comment with a
slash and asterisk (/*), which begins the comment, and an
asterisk and a slash (*/), which ends the comment, for
example,

/* The comment
 can span
 multiple lines
*/

This type of comment is useful for longer descriptions. It
is also useful for “commenting out” sections of a macro
for debugging purposes.

Again, if the /* or */ are in a literal string, they do not
serve as comment delimiters. These comments do not
nest; that is, the following construct will fail:

/*
 /* Comment does not nest
 This will cause an error
 */
*/

In this example, the first /* starts the comment. The
second /* is ignored because it is part of the comment.
The first */ terminates the comment, which causes the
second */ to generate an error.

Separators

Blanks, tabs, new lines, and comments serve to separate
tokens and are otherwise ignored.

MAGICAL II Programming 1

VnmrJ 4 User Programming 23

Variable types

As with many programming languages, MAGICAL provides
two classes of variables:

• Global variables (also called external) that retain their
values on a permanent or semi- permanent basis. These
are present in parameter sets and ~/vnmrsys/global, for
example.

Global variables in this section refer to variables that
retain their values upon exiting a macro and not
specifically to the variables present in ~/vnmrsys/global.

• Local variables (also called temporary, dummy, or
automatic) that are created for the time taken to execute
the macro in question, after which the variables no longer
exist.

Global and local variables can be of two types: real and
string. Global real variables are stored as double- precision
(64- bit) floating point numbers. The command
real(variable) creates a real variable without a value, in
which variable is the name of the variable to be created
and stored in the current parameter set.

Although global real variables have potential limits from
1e308 to 1e-308, when such variables are created, they are
given default maximum and minimum values of 1e18 and
-1e18; these can subsequently be changed with the setlimit
command. For example, setlimit('r1',1e99,-1e99,0) sets
variable r1 to limits of 1e99 and -1e99. Local real variables
have limits slightly less than 1e18 (9.999999843067e17, to
be precise) and cannot be changed.

String variables can have any number of characters,
including a null string that has no characters. The command
string(variable), in which variable is the name of the
variable to be created, creates a string variable without a
value, and is stored in the current parameter set.

Both real and string variables can have either a single value
or a series of values (also called an array).

Global and local variables have the following set of attributes
associated with them:

name group array size
basictype display group enumeration
subtype max./min. values protection status
active step size

24 VnmrJ 4 User Programming

1 MAGICAL II Programming

The variable’s attributes are used by programs when
manipulating variables.

Global variables

The most important global variables used in macros are the
VnmrJ parameters themselves. Thus parameters like vs
(vertical scale), nt (number of transients), at (acquisition
time), etc., can be used in a MAGICAL macro. Like any
variable, they can be used on the left side of an equation
(and hence their value changed), or they can be used on the
right side of an equation (as part of a calculation, perhaps
to set another parameter).

The real- value parameters r1, r2, r3, r4, r5, r6, and r7, and
the string parameters n1, n2, and n3 can be used by macros.
These are experiment- based parameters. Setting these
parameters in one experiment, exp1 for example, and
running a macro that changes experiments, using the
command jexp3 for example, causes a new set of such
parameters to appear. Similarly, recalling parameters or data
with the rt or rtp commands overwrites the current values
of these parameters, just as it overwrites the values of all
other parameters.

Within a single experiment, and assuming that the rt and
rtp commands are not used, these parameters act like global
parameters such that all macros can read or write
information into these parameters, and hence information
can be passed from one macro to another. Thus, they
provide a useful place to store information that must be
retained for some time or must be accessed by more than
one macro—make sure that some other macro does not
change the value of this variable in the meantime.

Variables stored in ~/vnmrsys/global are not
experiment- based and retain their values even when
jexp(experiment_number), rt<('file'<,'nolog'>)>, or
rtp<('file')> are used.

Local variables

Any number of local variables can be created within a
macro. These temporary variables begin with the dollar- sign
($) character, such as $number and $peakht. The type of
variable (real or string) is decided by the first usage- there is
no variable declaration, as in many languages. Therefore,
setting $number=5 and $select='all' establishes $number
as a real variable and $select as a string variable. Every

MAGICAL II Programming 1

VnmrJ 4 User Programming 25

macro is provided with some local variables.

$0 is the name of the macro. This can be used if a single
macro has multiple aliases (see jexp1 macro for an
example).

$# is the number of passed arguments. If no arguments
are passed, $# will be 0.

$1, $2, … $n contain the values of the first, second, …,
n- th argument respectively. For example, If $# = 0, there
will be no $1 variable. If $# = 3, there will be $1, $2, and
$3 variables.

$## is the number of return values the calling macro is
requesting.

For example, if macro A calls macro B as
B(pw,$filename):$res, the macro B will be provided with the
following local variables

$0=’A’

$#=2

$1=pw

$2=$filename

$##=1A special initialization is required in one situation.
When the first use of a string variable is used as the return
argument from a procedure, it must be initialized first by
being set to a null string. For example, the following line:
input('Input Your Name: '):$name

produces an error. Instead, use the following:
$name=' ' input('Input Your Name: '):$name.

By definition, local variables are lost on the completion of
the macro. Furthermore, they are completely local, which
means that each macro, even a macro that is being run by
another macro, has its own set of variables. If one macro
sets $number=5 and then runs another macro that sets
$number=10, when the second macro completes operation
and the execution of commands returns to the first macro,
$number equals 5, not 10. If the first macro is run again at
a later time, $number starts with an undefined value. It is a
good practice to use local variables whenever possible.

Local variables can also be created on the command input
line. These variables are automatically created but are not
deleted, and hence this is not a recommended practice; use
r1, r2, etc., instead.

26 VnmrJ 4 User Programming

1 MAGICAL II Programming

Accessing a variable that does not exist displays the
following error message:

Variable “variable_name” doesn’t exist.

Arrays

Both global and local variables, whether real or string, can
be arrayed. Array elements are referred to by square
brackets ([...]), such as pw[1]. Indices for the array can be
fixed numbers (pw[3]), global variables (pw[r1]), or local
variables (pw[$i]). Of course, the index must not exceed the
size of the array. Use the size operator to determine the
array size. For example, the statement r1=size('d2') sets
r1 to the number of elements in variable d2. If the variable
has only a single value, size returns a 1; if the variable
doesn’t exist, it returns a 0.

Some arrays, such as a pulse width array, are user- created.
Other arrays, such as llfrq and llamp, are created by the
software (in this case, when a line list is performed). In
both these cases, a macro can refer to any existing element
of the array, for example, pw[4] or llfrq[5].

A MAGICAL macro can also create local variables containing
arrayed information by itself. No dimensioning statement is
required; the variable just expands as necessary. The only
constraint is that the array must be created in order:
element 1 is first, element 2 second, and so on. The
following example shows how an array might be created and
all values initialized to 0:
$i=1
repeat
 $newarray[$i]=0
 $i=$i+1
until $i>10

Arrays of string variables

Arrays of string variables are identical in every way to
arrays of real variables, except that the values are strings. If,
for example, a user has entered dm='nny','yyy', the
following macro plots each spectrum with the proper label:
$i=1
repeat
 select($i)
 pl
 write('plotter',0,wc2max-10,'Decoupler mode: %s',dm[$i])
 page
 $i=$i+1
until $i>size('dm')

MAGICAL II Programming 1

VnmrJ 4 User Programming 27

Arrays of listed elements

Arrays can be constructed by simply listing the elements,
separated by commas. For example,
pw=1,2,3,4

creates a pw array with four elements. Select the initial array
element when using this list mechanism by providing the
index in square brackets. For example,
pw[3]=5,6

results in pw having elements 1,2,5,6. Extend arrays as in
pw[5]=7,8,9

which yields a pw array or 1,2,5,6,7,8,9. Change existing
values and extend the array, as in
pw[6]=6,7,8,9,10

which yields a pw array of 1,2,5,6,7,6,7,8,9,10

Comma separated lists can also include expressions. For
example,
d2=0,1/sw1,2/sw1,3/sw1

The square brackets can also be used on the right side of
the equal sign in order to construct arrays. The [] can
enclose a single value or expression or an array of values or
expressions. Any mathematics applied to the [] element is
applied individually to each element within the [].

Some examples.

Use [] to give precedence to expressions, just like ().

There are a couple of limitations if the [] element is used
as part of a mathematical expression. When used in
expressions, only a single [] element is allowed. Also, when
used in expressions, the [] element cannot be mixed with
the standard comma (,) arraying element. For example,
nt=[1,2]*[3,4] is not allowed and generates the error
message:

Enter Result
nt=[1] nt=1

nt=[1,2,3] nt=1,2,3

nt=[1,2,3]*10 nt=10,20,30

nt=22*[2*3,r2+6,trunc(r3)]+2 nt=22*2*3+2,22*(r2+6)+2,22*trunc(r3)+2

d2=[0,1,2,3]/sw1 d2=0/sw1,1/sw1,2/sw1,3/sw1

Enter Result
nt=[2*[3+4]] nt=14

28 VnmrJ 4 User Programming

1 MAGICAL II Programming

"No more than one [--.--]"

nt=1,[2,3,4]*10 is not allowed and generates the error
message:
"Cannot combine, with [--.--]"

These restrictions only occur if mathematical operators are
used and the [] element itself contains a comma. Simply
listing multiple [] elements, or combining them with the
comma element is okay.

Array error messages

Accessing an array element that does not exist displays the
error message:
variable_name['index'] index out of bounds

Using a string as an index, rather than an integer, displays
the error message:
Index for variable_name['index'] must be numeric

or
Index must be numeric

Finally, using an array as an index displays the error
message:
Index for variable_name must be numeric scalar

or
Index must be numeric scalar.

Expressions

An expression is a combination of variables, constants, and
operators. Parentheses can be used to group together a
combination of expressions. Multiple nesting of parentheses
is allowed. In making expressions, combine only variables
and constants of the same type:

• Real variables and constants only with other real
variables and constants.

• String variables and constants only with other string
variables and constants.

The type of a local variable (a variable whose name begins
with a $) is determined by the context in which it is first
used. The only ambiguity is when a local variable is first
used as a return argument of a command such as input, as
discussed in the previous section on local variables.

Enter Result
nt=[1,2],3 nt=1,2,3

nt=[1,2],[3,4] nt=1,2,3,4

MAGICAL II Programming 1

VnmrJ 4 User Programming 29

If an illegal combination is attempted, an error message is
displayed:
Can't assign STRING value "value" to REAL variable \
"variable_name"

or
Can't assign REAL value (value) to STRING variable \
"variable_name"

Mathematical expressions

Expressions can be classified as mathematical or Boolean.
Mathematical expressions can be used in place of simple
numbers or parameters. Expressions can be used in
parameter assignments, such as in pw=0.6*pw90, or as input
arguments to commands or macros, such as in
pa(-5+sc,50+vp).

When parameters are changed as a result of expressions, the
normal checks and limits on the entry of that particular
parameter are followed. For example, if nt=7, the statement
nt=0.5*nt will end with nt=3, just as directly entering
nt=3.5 would have resulted in nt=3. Other examples of this
include the round- off of fn entries to powers of two,
limitation of various parameters to be positive only, etc.

30 VnmrJ 4 User Programming

1 MAGICAL II Programming

Boolean expressions

Boolean expressions have a value of either TRUE or FALSE.
Booleans are represented internally as 0.0 for FALSE and 1.0
for TRUE, although in a Boolean expression, any number
other than zero is interpreted as TRUE. Boolean expressions
can only compare quantities of the same type- real numbers
with real numbers, or strings with strings. Some examples of
Boolean expressions include pw=10, sw>=10000, at/2<0.05,
and (pw<5) or (pw>10).

The explicit use of the words “TRUE” and “FALSE” is not
allowed. All Boolean expressions are implicit- they are
evaluated when used and given a value of TRUE or FALSE
for the purpose of some decision.

Input arguments

Arguments passed to a macro are referenced by $n, in which
n is the argument number. An unlimited number of
arguments ($1, $2, and so on) can be passed. The name of
the macro itself may be accessed using the special name $0.
For example, if the macro test1 is running, $0 is given the
value test1. A second special variable $# contains the
number of arguments passed and can be used for routines
having a variable number of arguments. $## is the number
of return values requested by the calling macro. Arguments
can be either real or string types, as with all parameters.

The following example uses an input argument, such as $1:
"vsmult(multiplier)"
"Multiply vertical scale (vs) by input argument"
vs=$1*vs

The following example uses two input arguments:
"offset(arg1,arg2)"
"Increment vertical position (vp) and horizontal position
(sc)"
vp=$1+vp
sc=$2+sc

The typeof operator returns a 0 if the variable is real. It
returns a 1 if the variable is a string. It will abort if the
variable does not exist. For example, in the conditional
statement if typeof('$1') then ..., the then part is
executed only if $1 is a string.

MAGICAL II Programming 1

VnmrJ 4 User Programming 31

Name replacement

An identifier surrounded by curly braces ({...}) results in the
identifier being replaced by its value before the full
expression is evaluated. If the name replacement is on the
left side of the equal sign, the new name is assigned a value.
If the name replacement is on the right side of the equal
sign, the value of the new name is used. The following are
examples of name replacement:

The use of curly braces for command execution is subject to
a number of constraints. In general, using the VNMR
command exec for the purpose of executing an arbitrary
command string is recommended. In this last example, this
would be exec($cmd).

Conditional statements

The following forms of conditional statements are allowed:
if booleanexpression then ... endif
if booleanexpression then ... else ... endif
if booleanexpression then ... {elseif boolianexpression
then... }[else...]endif

The elseif subexpression in braces can be repeated any
number of times. The else subexpression in brackets is
optional.

Any number of statements (including none) can be inserted
in place of the ellipses (...). If booleanexpression is TRUE,
the then statements are executed; if booleanexpression is
FALSE, the else statements (if any) are executed instead.
Note that endif is required for both forms and that no other
delimiters (such as BEGIN or END) are used, even when
multiple statements are inserted. Nesting of if statements
(the use of if statement as part of another if statement) is
allowed, but make sure that each if has a corresponding
endif. Nested if...endif statements tend to result in long,
confusing lists of endif keywords. Often, this can be avoided
by using the elseif keyword. Any number of elseif

$a = 'pw '"variable $a is set to string 'pw'"

{$a} = 10.3 "pw is set to 10.3"

pw = 20.5 "pw is set to 20.5"

$b = {$a} "variable $b is set to 20.5"

{$a}[2]=5 "pw[2] is set to 5.0"

$b = {$a}[2] "variable $b is set to 5.0"

$cmd='wft' "$cmd is set to the string 'wft'"

{$cmd} "execute wft command"

32 VnmrJ 4 User Programming

1 MAGICAL II Programming

statements can be included in an if...endif expression.
Only one of the if, elseif, or else clauses will be
executed.

The following example uses a simple if ... then
conditional statement:
"error --- Check for error conditions"
if (pw>100) or (d1>30) or ((tn='H1') and (dhp='y'))
 then write('line3','Problem with acquisition
parameters')
endif

The following example adds an else conditional statement:
"checkpw --- Check pulse width against predefined limits"
if pw<1
 then pw=1 write('line3','pw too small')
 else if pw>100
 then pw=100 write('line3','pw too large')
 endif
endif

The following example illustrates the use of elseif
conditional statements:
if ($1='mon') then
 echo('Monday')
elseif ($1 = 'tue') then
 echo('Tuesday')
elseif ($1 = 'wed') then
 echo('Wednesday')
elseif ($1 = 'thu') then
 echo('Thursday')
elseif ($1 = 'fri') then
 echo('Friday')
else
 echo('Weekend')
endif

Loops

Two types of loops are available. The while loop has the
following syntax:
while booleanexpression do ... endwhile

This type of loop repeats the statements between do and
endwhile, as long as booleanexpression is TRUE (if
booleanexpression is FALSE from the start, the statements
are not executed).

The other type of loop is the repeat loop, which has the
following syntax:

repeat ... until booleanexpression

This loop repeats statements between repeat and until,
until booleanexpression becomes TRUE (if

MAGICAL II Programming 1

VnmrJ 4 User Programming 33

booleanexpression is TRUE at the start, the statements are
executed once).

The essential difference between repeat and while loops is
that the repeat type always performs the statements at least
once, while the while type may never perform the
statements. The following macro is an example of using the
repeat loop:
"maxpk(first,last) -- Find tallest peak in a series of
spectra"
$first=$1
repeat
 select($1) peak:$ht
 if $1=$first
 then $maxht=$ht
 else if $ht>$maxht then $maxht=$ht endif
 endif
 $1=$1+1
until $1>$2

Both types of loops are often preceded by $n=1, then have a
statement such as $n=$n+1 within the loop to increment
some looping condition. Beware of endless loops!

Macro length and termination

Macros have no restriction on length. Execution of a macro
is terminated either after the last instruction / line is
executed, or when the command return is encountered. This
is usually inserted into the macro after testing some
condition, as shown in the following example:
"plotif--Plot a spectrum if tallest peak less than 200 mm"
peak:$ht
if $ht>200 then return else pl endif

The syntax return(expression1,expression2,...) allows
the macro to return values to another calling macro, just like
do commands. This information is captured by the calling
macro using the format :argument1,argument2,... The
following example returns a value to the calling macro:
"abs(input):output -- Take absolute value of input"
if $1>0 then return($1) else return(-$1) endif

In nested macros, return terminates the currently operating
macro, but not the macro that called the current macro.

To terminate the action of the calling macro (and all higher
levels of nesting), the abort command is provided. abort can
be made to act like return at any particular level by using
the abortoff command. Consider the following sequence:
abortoff macro1 macro2

If macro1 contains an abort command and it is executed,

34 VnmrJ 4 User Programming

1 MAGICAL II Programming

abort terminates macro1; however, macro2 will still be
executed. If the macro sequence did not contain the
abortoff statement, however, execution of an abort
command in macro1 would have prevented the operation of
macro2. The aborton command nullifies the operation of
abortoff and restores the normal functioning of abort.

An alternative mechanism to the abort mechanism is to use
the exec command. This allows a macro to execute another
macro and determine if the called macro aborted or not. The
calling macro can then decide whether it should abort or
continue. See the CPR enter for the exec command for
additional details.

Command and macro tracing

In VnmrJ, we send the output to any terminal window. In
the terminal window type 'tty'; reply is /dev/pts/xx, in
which xx is a number. Use this on the VnmrJ command line
jFunc(55,'/dev/pts/xx'). Replace xx with the correct
number. Alternatively, the tracing output can be routed into
a file, e.g., with jFunc(55,userdir+'/vnmrj_trace').

The commands debug('c') and debug('C') turn on and off,
the VnmrJ command and macro tracing, respectively. When
tracing is on, a list of each executed command and macro is
displayed in the terminal window from which VnmrJ was
started. Nesting of the calls is shown by indentation of the
output. A return status of “returned” or “aborted” can help
track down the macro or command that failed.

The debug command has options ‘c2’ and ‘c3’ for additional
output. The ‘c2’ option prints the arguments and return
values for all command and macro calls. The ‘c3’ option
additionally shows all parameter assignments. The Magical
debugger will display the line number of an error is the
macro fails. If a command called from a macro fails, the
debugger will show the line number if the debug option is
turned on. The ‘c0’ option to debug causes the line number
of a failed command to be displayed, without all the other
tracing output. See the CPR entry for debug for more details.

MAGICAL II Programming 1

VnmrJ 4 User Programming 35

Relevant VnmrJ Commands

• Spectral Analysis tools

• Input/output tools

• Regression and Curve fitting

• Mathematical functions

• Creating, Modifying, and Displaying macros

• Miscellaneous tools

Many VnmrJ commands are particularly well- suited for use
with MAGICAL programming. This section lists some of
those commands with their syntax (if the command uses
arguments) and a short summary taken from the VnmrJ
Command and Parameter Reference. Refer to that
publication for more information. (Remember that string
arguments must be enclosed in single quotes.)

Spectral analysis tools

dres Measure linewidth and digital resolution
Syntax: dres<(<frequency<,fractional_height>>)> \

:linewidth,resolution

Description: Analyzes line defined by current cursor
position (cr) for linewidth and digital
resolution. frequency overrides cr as the
line frequency. fractional_height specifies
the height at which linewidth is measured.

dsn Measure signal-to-noise
Syntax: dsn<(low_field,high_field)>:signal_to_noise

,noise

Description: Measures signal- to- noise of the tallest peak
in the displayed spectrum. Noise region, in
Hz, is specified by supplying low_field and
high_field frequencies or it is specified by
the positions of the left and right cursors.

dsnmax Calculate maximum signal-to-noise
Syntax: dsnmax<(noise_region)>

Description: Finds best signal- to- noise in a region.
noise_region, in Hz, can be specified, or the
cursor difference (delta) can be used by
default.

36 VnmrJ 4 User Programming

1 MAGICAL II Programming

getll Get line frequency and intensity from line list
Syntax: getll(line_number)<:height,frequency>

Description: Returns the height and frequency of the
specified line number.

getreg Get frequency limits of a specified region
Syntax: getreg(region_number)<:minimum,maximum>

Description: Returns the minimum and maximum
frequencies, in Hz, of the specified region
number.

integ Find largest integral in specified region
Syntax: integ<(highfield,lowfield)><:size,value>

Description: Finds the largest absolute- value integral in
the specified region or the total integral if
no reset points are present between the
specified limits. The default values for
highfield and lowfield are parameters sp
and sp+wp, respectively.

mark Determine intensity of the spectrum at a point
Syntax: mark<(f1_position)>

mark<(left_edge,region_width)>

mark<(f1_position,f2_position)>

mark<(f1_start,f1_end,f2_start,f2_end)>

mark<('trace',<options>)>

mark('reset')

Description: 1D or 2D operations can be performed in the
cursor or box mode for a total of four
separate functions. In the cursor mode, the
intensity at a particular point is found. In
the box mode, the integral over a region is
calculated. For 2D operations, this is a
volume integral. In addition, the mark
command in the box mode finds the
maximum intensity and the coordinate(s) of
the maximum intensity.

nll Find line frequencies and intensities
Syntax: nll<('pos'<,noise_mult))><:number_lines>

Description: Returns the number of lines using the
current threshold, but does not display or
print the line list.

numreg Return the number of regions in a spectrum
Syntax: numreg:number_regions

MAGICAL II Programming 1

VnmrJ 4 User Programming 37

Input/Output tools

Description: Finds the number of regions in a previously
divided spectrum.

peak Find tallest peak in specified region
Syntax: peak<(min_frequency,max_frequency)><:height

,freq>

Description: Finds the height and frequency of the tallest
peak in the selected region. min_frequency
and max_frequency are the frequency limits,
in Hz, of the region to be searched; default
values are the parameters sp and sp+wp.

select Select spectrum or 2D plane without displaying it
Syntax: select<(<'f1f3'|'f2f3'|'f1f2'><,'proj'> \

<'next'|'prev'|plane>)><:index>

Description: Sets future actions to apply to a particular
spectrum in an array or to a particular 2D
plane of a 3D data set. index is the index
number of spectrum or 2D plane.

apa Plot parameters automatically
Description: Selects the appropriate command on different

devices to plot the parameter list.

banner Display message with large characters
Syntax: banner(message<,color><,font>)

Description: Displays the text given by message as
large- size characters on the VNMR graphics
windows.

clear Clear a window
Syntax: clear<(window_number)>

Description: Clears window given by window_number. With
no argument, clears the text screen. Clear(2)
clears the graphics screen.

echo Display strings and parameter values in text window
Syntax: echo<(<'-n',>string1,string2,....)>

Description: Functionally similar to the UNIX echo
command. Arguments to VNMR echo can be
strings or parameter values, such as pw. The
'-n' option suppresses advancing to the next
line.

38 VnmrJ 4 User Programming

1 MAGICAL II Programming

format Format a real number or convert a string for output
Syntax: format(real_number,length,precision):string_var

format(string,'upper'|'lower'|'isreal'):return_var

Description: Using first syntax, takes a real number and
formats it into a string with the given length
and precision. Using second syntax, converts a
string variable into a string of characters, all
upper case or all lowercase, or tests the first
argument to verify that it satisfies the rules
for a real number (1 is returned if the first
argument is a real number, otherwise a zero is
returned).

input Receive input from keyboard
Syntax: input<(<prompt><,delimiter>)>:var1,var2,...

Description: Receives characters from the keyboard and
stores them into one or more string variables.
prompt is a string that is displayed on the
command line. The default delimiter is a
comma.

lookup Look up and return words and lines from text file
Syntax: lookup(options):return1,return2,...,number_re

turned

Description: Searches a text file for a word and returns to
the user subsequent words or lines. options is
one or more keywords ('file', 'seek',
'skip', 'read', 'readline', 'count', and
'delimiter') and other arguments.

nrecords Determine number of lines in a file
Syntax: nrecords(file):$number_lines

Description: Returns the number of “records,” or lines, in
the given file.

psgset Set up parameters for various pulse sequences
Syntax: psgset(file,param1,param2,...,paramN)

Description: Sets up parameters for various pulse
sequences using information in a file from the
user or system parlib.

write Write output to various devices

MAGICAL II Programming 1

VnmrJ 4 User Programming 39

Regression and curve fitting

Syntax: write('graphics'|'plotter'<,color|pen> \
<,'reverse'>,x,y<,template>)<:height>
write('alpha'|'printer'|'line3'|'error',
template)
write('reset'|'file',file<,template>)

Description: Displays strings and parameter values on
various output devices.

analyze Generalized curve fitting
Syntax: (Curve fitting)

analyze('expfit',xarray<,options>)
(Regression)
analyze('expfit','regression'<,options>)

Description: Provides an interface to the curve fitting
program expfit, supplying input data in the
form of the text file analyze.inp in the
current experiment.

autoscale Resume autoscaling after limits set by scalelimits
Description: Returns to autoscaling in which the scale

limits are determined by the expl command
such that all the data in the expl input file
is displayed.

expfit Least-squares fit to exponential or polynomial curve
Syntax: expfit options <analyze.inp >analyze.list

Description: A command that takes a least- squares curve
fitting to the data supplied in the file
analyze.inp.

expl Display exponential or polynomial curves
Syntax: expl<(<options,>line1,line2,...)>

Description: Displays exponential curves resulting from T1,
T2, or kinetic analyses. Also displays
polynomial curves from diffusion or other
types of analysis.

pexpl Plot exponential or polynomial curves
Syntax: pexpl<(<options><,line1,line2,...)>

Description: Plots exponential curves from T1, T2, or
kinetics analysis. Also plots polynomial
curves from diffusion or other types of
analysis.

poly0 Display mean of the data in the file regression.inp

40 VnmrJ 4 User Programming

1 MAGICAL II Programming

Mathematical functions

Description: Calculates and displays the mean of data in
the file regression.inp.

rinput Input data for a regression analysis
Description: Formats data for regression analysis and

places it into the file regression.inp.

scalelimits Set limits for scales in regression
Syntax: scalelimits(x_start,x_end,y_start,y_end)

Description: Causes the command expl to use typed- in
scale limits.

abs Find absolute value of a number
Syntax: abs(number)<:value>

Description: Finds the absolute value of a number.

acos Find arc cosine of a number
Syntax: acos(number)<:value>

Description: Finds the arc cosine of a number. The
optional return value is in radians.

asin Find arc sine of a number
Syntax: asin(number)<:value>

Description: Finds the arc sine of a number. The optional
return value is in radians.

atan Find arc tangent of a number
Syntax: atan(number)<:value>

Description: Finds the arc tangent of a number. The
optional return value is in radians.

atan2 Find arc tangent of two numbers
Syntax: atan2(y,x)<:value>

Description: Finds the arc tangent of y/x. The optional
return argument value is in radians.

averag Calculate average and standard deviation of input
Syntax: averag(num1,num2,...)\

:average,sd,arguments,sum,sum_squares

Description: Finds average, standard deviation, and other
characteristics of a series of numbers.

MAGICAL II Programming 1

VnmrJ 4 User Programming 41

Creating, modifying, and displaying macros

cos Find cosine value of an angle
Syntax: cos(angle)<:value>

Description: Finds the cosine of an angle given in
radians.

exp Find exponential value of a number
Syntax: exp(number)<:value>

Description: Finds the exponential value (base e) of a
number.

ln Find natural logarithm of a number
Syntax: ln(number)<:value>

Description: Finds the natural logarithm of a number. To
convert to base 10, use log10x = 0.43429
*ln(x).

sin Find sine value of an angle
Syntax: sin(angle)<:value>

Description: Finds the sine of an angle given in radians.

tan Find tangent value of an angle
Syntax: tan(angle)<:value>

Description: Finds the tangent of an angle given in
radians.

crcom Create a user macro without using a text editor
Syntax: crcom(file,actions)

Description: Creates a user macro file in the user’s
macro directory. The actions string is the
contents of the new macro.

delcom Delete a user macro
Syntax: delcom(file)

Description: Deletes a user macro file in the user’s macro
directory. The actions string is the contents
of the new macro.

hidecommand Execute macro instead of command with same name
Syntax: hidecommand(command_name)<:$new_name>

hidecommand('?')

42 VnmrJ 4 User Programming

1 MAGICAL II Programming

Description: Renames a built- in VNMR command so that
a macro with the same name as the built- in
command is executed instead of the built- in
command. command_name is the name of the
command to be renamed. '?' displays a list
of renamed built- in commands.

macrocat Display a user macro on the text window
Syntax: macrocat(file1<,file2><,...>)

Description: Displays one or more user macro files, in
which file1, file2... are names of
macros in the user macro directory.

macrocp Copy a user macro file
Syntax: macrocp(from_file,to_file)

Description: Makes a copy of an existing user macro.

macrodir List user macros
Description: Lists the names of user macros.

macroedit Edit a user macro with user-selectable editor
Syntax: macroedit(file)

Description: Modifies an existing user macro or creates a
new macro. To edit a system macro, copy it
to a personal macro directory first.

macrold Load a macro into memory
Syntax: macrold(file)<:dummy>

Description: Loads a macro, user or system, into
memory. If the macro already exists in
memory, it is overwritten by the new macro.
Including a return value suppresses the
message on line 3 that the macro is loaded.

macrorm Remove a user macro
Syntax: macrorm(file)

Description: Removes a user macro from the user macro
directory.

macrosyscat Display a system macro on the text window
Syntax: macrosyscat(file1<,file2><,...>)

Description: Displays one or more system macro files, in
which file1, file2,... are names of
macros in the system macro directory.

macrosyscp Copy a system macro to become a user macro
Syntax: macrosyscp(from_file,to_file)

Description: Makes a copy of an existing system macro.

macrosysdir List system macros
Description: Lists the names of system macros.

MAGICAL II Programming 1

VnmrJ 4 User Programming 43

Miscellaneous tools

macrosysrm Remove a system macro
Syntax: macrosysrm(file)

Description: Removes a system macro from the macro
directory.

macrovi Edit a user macro with vi text editor
Syntax: macrovi(file)

Description: Modifies an existing user macro or creates a
new macro using the vi text editor. To edit
a system macro, copy it to a personal macro
directory first.

mstat Display memory usage statistics
Syntax: mstat<(program_id)>

Description: Displays the memory usage statistics of
macros loaded into memory.

purge Remove a macro from memory
Syntax: purge<(file)>

Description: Removes a macro from memory, freeing
extra memory space. With no argument,
removes all macros loaded into memory
through macrold.

record Record keyboard entries as a macro
Syntax: record<(file|'off')>

Description: Records keyboard entries and stores the
entries as a macro file in the user’s maclib
directory.

axis Provide axis labels and scaling factors
Syntax: axis('fn'|'fn1'|'fn2')<:$axis_label, \

$frequency_scaling,$factor>
Description: Returns axis labels, the divisor to convert

from Hz to units defined by the axis
parameter with any scaling, and a second
scaling factor determined by any scalesw type
of parameter. The parameter
'fn'|'fn1'|'fn2' describes the Fourier
number for the axis.

beepoff Turn beeper off
Description: Turns the beeper sound off. The default is

beeper sound on.

beepon Turn beeper on
Description: Turns the beeper sound on. The default is

beeper sound on.

44 VnmrJ 4 User Programming

1 MAGICAL II Programming

bootup Macro executed automatically when VnmrJ is started
Syntax: bootup<(foreground)>

Description: Displays a message, runs a user login macro
(if it exists), starts Acqstat and acqi
(spectrometer only), and displays the menu
system. bootup and login can be customized
for each user (login is preferred because
bootup is overridden when a new VNMR
release is installed). foreground is 0 if VNMR
is being run in foreground, non- zero
otherwise.

exec Execute a VnmrJ command
Syntax: exec(command_string)

Description: Takes as an argument a character string
constructed from a macro and executes the
VNMR command given by command_string.

exists Determine if a parameter, file, or macro exists
Syntax: exists(name,type):$exists

Description: Checks for the existence of a parameter, file,
or macro with the given name. type is
'parameter', 'file', 'maclib', 'ascii',
'directory' or filename. See the Command
and Parameter Reference manual for a
detailed description of the use of exists for
Applications Directory usage.

focus Send keyboard focus to VNMR input window
Description: Sends the keyboard focus to the VNMR input

window.

gap Find gap in the current spectrum
Syntax: gap(gap,height):found,position,width

Description: Looks for a gap between lines of the currently
displayed spectrum, in which gap is the width
of the desired gap and height is the starting
height. found is 1 if search is successful, or 0
if unsuccessful.

getfile Get information about directories and files
Syntax: getfile(directory,file_index):$file,

$file_extension
getfile(directory):$number_files

MAGICAL II Programming 1

VnmrJ 4 User Programming 45

Description: If file_index is specified, the first return
argument is the name of the file in the
directory with the index file_index,
excluding any extension, and the second
return argument is the extension. If
file_index is not specified, the return
argument contains the number of files in the
directory (dot files are not included in the
count).

graphis Return the current graphics display status
Syntax: graphis(command):$yes_no

graphis:$display_command
Description: Determines what command currently controls

the graphics window. If no argument is
supplied, the name of the currently controlling
command is returned.

length Determine length of a string
Syntax: length(string):$string_length

Description: Determines the length in characters of the
given string.

listenoff Disable receipt of messages from send2Vnmr
Description: Deletes the file $vnmruser/.talk, disallowing

UNIX command send2Vnmr to send commands
to VNMR.

listenon Enable receipt of messages from send2Vnmr
Description: Writes files with VNMR port number that

UNIX command send2Vnmr needs to talk to
VNMR. Then, the command to send commands
to VNMR is
/vnmr/bin/send2Vnmr $vnmruser/.talk
command
in which command is any character string
(commands, macros, or if statements) normally
typed into the VNMR input window.

login User macro executed when VnmrJ activated
Description: When VNMR starts, the bootup macro

executes, and then, if the login macro exists,
bootup executes the login macro. By creating
and customizing the login macro, a VNMR
session can be tailored for an individual user.
The login macro does not exist by default.

off Make a parameter inactive

46 VnmrJ 4 User Programming

1 MAGICAL II Programming

Syntax: off(parameter|'n'<,tree>)

Description: Makes a parameter inactive. tree is
'current', 'global', 'processed', or
'systemglobal'.

on Make a parameter active or test its state
Syntax: on(parameter|'y'<,tree>)<:$active>

Description: Makes a parameter active or tests the active
flag of a parameter. tree is 'current',
'global', 'processed', or 'systemglobal'.

readlk Read current lock level
Syntax: readlk<:lock_level>

Description: Returns the same information as would be
displayed on the digital lock display using the
manual shimming window. It cannot be used
during acquisition or manual shimming, but
can be used to develop automatic shimming
methods such as shimming via grid searching.

rtv Retrieve individual parameters
Syntax: rtv<(file,par1<,index1<,par2,index2...>>)>

<:val>
Description: Retrieves one or more parameters from a

parameter file to the experiment's current
tree. If a return argument is added, rtv
returns values to macro variables instead,
which avoids creating additional parameters in
the current tree. For arrayed parameters,
array index arguments can specify the
elements to be returned to the macro. The
default is the first element.

shell Start a UNIX shell
Syntax: shell<(command)>:$var1,$var2,...

Description: If no argument is given, opens a normal UNIX
shell. If a UNIX command is entered as an
argument, shell executes the command. Text
lines usually displayed as a result of the UNIX
command given in the argument can be
returned to $var1, $var2, etc. shell calls
involving pipes or input redirection (<) require
either an extra pair of parentheses or the
addition of
; cat to the shell command string, such as:
shell('ls -t|grep May; cat')
or
shell('(ls -t|grep May))

MAGICAL II Programming 1

VnmrJ 4 User Programming 47

solppm Return ppm and peak width of solvent resonances
Syntax: solppm:chemical_shift,peak_width

Description: Returns information about the chemical shift
in ppm and peak spread of solvent resonances

in various solvents for either 1H or 13C,
depending on the observe nucleus tn and the
solvent parameter solvent. This macro is used
“internally” by other macros only.

substr Select a substring from a string
Syntax: substr(string,word_number):substring

substr(string,index,length):substring
Description: Picks a substring from a string. If two

arguments are given, substring returns the
word_number word in string. If there are
three arguments, it returns a substring from
string in which index is the number of the
character at which to begin and length is the
length of the substring.

textis Return the current text display status
Syntax: textis(command):$yes_no

textis:$display_command
Description: Determines what command currently controls

the text window. If no argument is supplied,
the name of the current controlling command
is returned.

unit Define conversion units
Syntax: unit<(suffix,label,m<,tree><,'mult'|'div'>, \

b<,tree><,'add'|'sub'>)>
Description: Defines a linear relationship that can be used

to enter parameters with units. The unit is
applied as a suffix to the numerical value
(e.g., 10k, 100p). suffix identifies the name
for the unit (e.g., 'k'). label is the name to
be displayed when the axis parameter is set
to the value of the suffix (e.g., 'kHz'). m and b
are the slope and intercept, respectively, of the
linear relationship. A convenient place to put
unit commands for all users is in the bootup
macro. Put private unit commands in a user’s
login macro.

48 VnmrJ 4 User Programming

1 MAGICAL II Programming

49

Agilent VnmrJ 4 User Programming
Reference Guide

Agilent Technologies

2
Pulse-Sequence Programming

Overview of Pulse-Sequence Programming 50

Pulse-Sequence Statements 64

Real-Time Control of Pulse Sequences 83

Shaped Pulses and Waveforms 95

Programming for Acquisition Control 110

Multidimensional NMR and Arrays 121

Syntax for Controlling Parallel Channels 130

Parameters and Variables 141

Pulse Sequence Output 155

Setting the Amplitude, Phase, and Gate from Tables 159

Gradient Control for PFG and Imaging 161

50 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Overview of Pulse-Sequence Programming

This section provides an overview of pulse- sequence
programming in VnmrJ.

Overview of pulse-sequence execution

Pulse sequences are written in C, a high- level programming
language that allows considerable sophistication in the way
pulse sequences are created and executed. A new pulse
sequence is written as a C function called pulsesequence.
The file containing this function is compiled and linked with
an object library that contains the definitions for all
pulse- sequence statements, the PSG.

A compiled C sequence is executed on the Linux workstation
at the start of acquisition, so- called run- time. At run- time,
the sequence reads values from a parameter table and
constructs a second real- time program of acodes, whose
purpose will be to run on the controllers in the acquisition
computer of the VNMRS.

At run- time, the compiled C- program may also use text files
in the directory shapelib, whose members have the
extensions.RF,.DEC, and.GRD, so- called shape, waveform,
or gradient files. These files contain amplitude, phase and
gate information for shaped pulses, waveforms, and
gradients. The files in shapelib are read at run- time and
stored in the controllers in binary form before the first scan.
For modern pulse programs, shape, waveform and gradient
files are usually created by C functions in the pulse program
itself, but they might also be prewritten by another program,
for example Pbox, or simply with a text editor.

The PSG library contains C code to run the pulsesequence
function in multidimensional loops of up to four dimensions
and to run spectra corresponding to arrays of parameter
values. The user need not program these loops explicitly.

At the start of the acquisition, all of the variables and
statements of the compiled C- program, including the C- loops
and conditionals, are resolved and fixed into acodes, without
the possibility of further input or calculation. A complex
program with many choices, using the C if-else-endif
statement, may resolve into a very few acodes, because the
acodes in the non- selected branches are never created. A
pulse program with multidimensional looping and/or
parameter arrays will produce a separate set of acodes for

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 51

every increment and therefore, may use considerable
memory. The same is true for the C for and while
statements.

The real- time acode program is automatically looped over
the number of scans for each multidimensional increment or
array element. Special real- time integer tables, t1 to t60
and real- time integer variables, v1 to v42, are used to
increment phases and other values that might change
scan- to- scan. These tables and variables are initialized and
manipulated by special pulse- sequence statements, the
real- time math statements.

The loop-endloop, rlloop-rlendloop, and
kzloop-kzendloop statements can execute an explicit
real- time loop within a single scan and the
ifzero-elsenz-endif statement can make a real- time
choice, based upon a real- time integer variable as an
argument.

Sections of the pulse sequence can be written as a parallel
section, where individual hardware controllers are
programmed independently. This provides a mechanism to
program events that occur simultaneously on the different
channels.

The stored shape and waveform files of shapelib can also
be accessed and looped in real- time, though this mechanism
is different from that used for loop-endloop. It should be
recognized that the use of a real- time loop with tables and
the use of a waveform or shape are alternative approaches
to obtain the same result. Each approach has its own
programming requirements and performance. Real- time
looping has become the favored method for imaging
applications, while the use of shapes and waveforms has
been favored for spectroscopy.

A multidimensional pulse program with many waveforms
requires considerable calculation and a large data- transfer to
the acquisition computer at run- time, but this kind of
program will place a lower burden on the controllers. A
pulse program that makes heavy use of real- time loops and
calculation will take less time to start but it could have
lower performance in real- time.

Compiling a pulse sequence with the PSG

Pulse- sequence text files, such as the listing of hom2dj.c in
Table 3, are stored in a directory named psglib in either the
system directory (/vnmr/psglib) or in a user directory

52 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

(/home/vnmr1/vnmrsys/psglib for the user vnmr1). A
pulse- sequence file has the extension .c to indicate that it
contains C- language source code. Pulse sequences may also
be saved in the psglib directory of an applications
directory, which may have any name and path. An
applications directory is made accessible through the Edit
Applications tool of the Files pull down menu.

A pulse- sequence text file can be modified using the Linux
tool vi, the standard Red Hat editor gedit, or by an available
text editor or development package.

Pulse- sequence source code is compiled by one of the
following methods:

• By entering seqgen(filename<.c>)on the VnmrJ
command line.

• By entering seqgen on the VnmrJ command line, with
seqfil='filename'

• By entering seqgen filename<.c> from a Linux shell in
the psglib directory

For example, enter seqgen('hom2dj') to compile the
hom2dj.c sequence in VnmrJ. A full path is not necessary
from the command line. Alternatively, you can enter seqgen
hom2dj in the psglib directory in a Linux shell. The seqgen
command will first search the user, then the available
applications directories, and then the system for a file with
a .c extension.

Table 3 Partial listing for the hom2dj.c pulse sequence

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 53

During compilation, the system performs the following steps:

1 Extensions are added to the pulse sequence to allow a
graphical display of the sequence, using the dps
command.

2 The source code is passed through the Linux program
lint to check for syntax, variable consistency, and the
correct usage of functions.

3 The source code is converted into compiled object code.

4 If the conversion is successful, the object code is
combined with the necessary system PSG object libraries
(libparam.so and libpsglib.so), to be linked at
run- time. If the compilation of the pulse sequence with
the dps extensions fails, the pulse sequence is recompiled
without the dps extensions.

The executable code is stored in the user seqlib directory
(for example, /home/vnmr1/vnmrsys/seqlib. If the user does
not have a seqlib directory, it is automatically created. A
copy of the source code is also saved in vnmrsys/seqlib of
the user directory. If desired, you can copy the compiled
sequence to /vnmr/seqlib or to the seqlib directory in an
applications directory.

Many standard, compiled sequences are supplied in
/vnmr/seqlib and the source code for each of these
sequences is found in /vnmr/psglib. To recompile one of
these sequences or to modify it,first copy the sequence into
the user psglib, make the required modifications, and then
recompile the sequence using seqgen. Sequences can only be
compiled from a user directory. If you attempt to compile a
system sequence, a local copy will be created. The
seqgenupdate command performs a seqgen as the first step,
and will then attempt to move the resulting seqlib entries
back to the application directory from which they were
taken.

The source files that are used to create the PSG object
library are contained in the system directory /vnmr/psg. In
principle, a user can customize and recompile the PSG
source files, but most users do not do so. It is easier to add
the user source code in a separate file using the standard C
#include statement. User #include files should be stored in
the /vnmrsys/psg directory of a user or an applications
directory.

54 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Troubleshooting a new pulse sequence

During the compilation process, the user- written C
procedure is passed through a utility to identify incorrect C
syntax or potential coding problems. If an error occurs,
messages are displayed in the Text panel of the Process tab
of the VnmrJ interface. The error messages are also saved in
a file with a .err extension in psglib and seqlib. A typical
error report is shown below:

Pulse sequence did not compile.

The following errors can also be found in the

file /home/vnmr1/vnmrsys/psglib/name.errors:

Errors begin with the name of the pulse sequence enclosed
in double quotes, followed by the line number and a brief
description of the problem. For sequences that employ
#include statements, the name of the included file will be
identified. You should usually correct errors from the top
down. Often, errors can result from mistakes in lines other
than that identified. Sometimes simple errors in the
placement of braces can generate many spurious error
messages.

If a warning occurs, the following message is displayed:

Pulse sequence did compile but may not function properly.

The following comments can also be found in the

file /home/vnmr1/vnmrsys/psglib/name.errors:

A warning message reveals problems with the C- syntax of a
compiled sequence that may or may not prevent operation of
the sequence. It is usually a good practice to address all
warnings.

At times, a sequence will compile properly in one version of
VnmrJ but will give warnings in another. This is caused by
the changing standards of the C compilers in different
versions of VnmrJ.

You must keep a watch for the following three typical
warnings:

warning: conversion from long may lose accuracy

warning: parameter_name may be used before set

warning: parameter_name redefinition hides earlier one

The first warning is often generated from older code that
contains a calculation with the overall array index, ix. While
the error itself is usually not a problem, it is usually
appropriate to replace the use of ix with a call to one of
the nD indexes. Some examples are shown in the section

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 55

discussing Multidimensional Experiments and Arrays.

The second warning indicates an un- initialized variable. All
C variables must have an initial value before they are used.
This error is often caused by variables that are first
initialized within a loop or conditional. Assign these
variables a dummy value such as 0, or change the logic of
the loop or conditional.

The third warning indicates that a local variable defined in
the pulse sequence has the same name as one of the
standard PSG variables. The appendix provides a list of all
global variables defined in the PSG. It is not necessary to
redefine these values if their default behavior is required
and the redefinition of one of these names for another
purpose may have unpredictable consequences. This warning
is normally avoided by removing the redefinition or by
renaming the variable in the pulse- sequence file if it has a
different purpose.

If the pulse- sequence program is syntactically correct, the
following message is displayed:

Done! Pulse sequence now ready to use.

A compiled sequence may still have errors at run- time.
These errors are caused by mistakes in the program logic
and more subtle C- syntax errors. One of the most common
is:

Segementation Violation: Index overruns boundary of an
array.

A segmentation violation is often caused by enclosing a
string within single quotes. All C strings should be enclosed
in double quotes. Segmentation violations are not identified
with a line number and so they can be tedious to fix. The
best approach is to comment out parts of the pulse sequence
until the error is fixed. Then reinsert the code block- by-
block to identify the location of the error. It is also helpful
to insert printf statements into the sequence to print out
parameter values or to reveal a particular location in code.
The statement printf prints in the Text page of the Process
panel.

Creating a parameter table for a new sequence

A compiled pulse sequence requires a parameter table. If a
sequence is written with a getval or a getstr statement for
a new parameter name, that parameter must be added to the
parameter table. If the parameter is absent, the system will
output a warning and supply a default. The sequence may or

56 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

may not run with the default value.

The PSG object library contains a group of global PSG
variables (designated extern) that are known to the
pulsesequence function. Many of these variables are
initialized automatically from the parameter table. Their
absence may cause both the sequence and the VnmrJ
interface to fail.

It is a good practice to run a new pulse sequence first with
the parameter table of a similar sequence. A parameter set
can be loaded with the command rtp from the command
line or you can select the related experiment from the
Experiments pull- down menu or the Experiment Selector.
Set seqfil to the new pulse- sequence name and attempt to
run. The error messages will indicate the new parameters
that are needed.

Most parameters that you enter from the interface, including
those that initialize global PSG variables, are declared to be
in the current tree. At the completion of acquisition, all
current parameters are copied to the processed tree and
the command svf saves the processed parameters. Both
current and processed parameters are known only to a
single workspace. A small number of global and
systemglobal parameters are known to any parameter tree
in a user or system- wide. The procedures for creating and
managing parameters are discussed in Chapter 5,
“Parameters and Data” .

Note the difference between global PSG variables and
global parameters. These are separate, unrelated entities,
despite the fact that the word “global” is used in both
names.

C framework for pulse sequences

Each pulse sequence is a function in the C programming
language named pulsesequence. The pulsesequence
function contains pulse- sequence statements to control the
spectrometer, which are defined in the PSG object library.

Every C function is followed by a pair of parentheses () for
potential arguments and the code is included in a pair of
braces {}. Every VnmrJ sequence must also contain the
#include statement for <standard.h> at the top of the file.
A sequence may also have additional #include statements to
add optional user libraries of functions. Note that largeuser
#include files may substantially lengthen compilation time.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 57

#include <standard.h>

#include myinclude.h

void pulsesequence()

{

.

 delay(d1);

.

}

The VnmrJ pulse- sequence language is a standard
C- language compiler. Any statement that is described in a
standard C manual can be used in a VnmrJ sequence. These
statements include variable definitions, assignment
statements, loops such as for and while, conditionals such as
if, else, and the switch statement as well as advanced
entities such as structures and pointers, if required.
Standard C is used to control the structure of the program
and do calculations. It has no effect on the program in real
time.

VnmrJ pulse- sequence statements are defined in the PSG
library and their purpose is to make acodes that run in
real- time. These statements control pulses, delays,
frequencies, amplitudes, etc during the real- time execution of
the sequence in the acquisition computer. Some
pulse- sequence statements have an explicit time argument.
Statements of this type are used to add a pulse or delay to
the sequence. Other pulse- sequence statements simply set a
state, for example a gate, the phase, or an amplitude. These
statements add no time to the sequence.

There are no AP- Bus delays associated with the VNMRS
hardware, as there were with Unity- series systems. There is
one group of exceptions, the synthesizer frequency offset
statements, each of which add about a 1.0 µs delay to the
sequence. The statements that set the coarse power also add
50 ns to the sequence.

The arguments of a pulse- sequence statement are variables
of the C language as described in Table 4.

Table 4 C-Variable types used in pulse sequences

Type Description Length (bits)- use

char character 8 - often used

short short integer 16 - occasionally used in the PSG

int integer 32- often used

58 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Most pulse sequences make use of only the int, char, and
double types. Strings are defined as arrays of char usually
with the dimension MAXSTR. In C, strings are defined
explicitly in double quotes, " ". In contrast, string parameter
values in the VnmrJ interface are defined in single quotes, '
'. Failure to recognize this difference can be a source of
programming errors.

Most variables are of type double and they are used to set
values, such as delays, amplitudes, frequencies, etc, or they
are used to do calculations. Arguments can be variable
names (for example, d1), constants (for example, 3.4 or
20.0e-6), expressions (for example, 2.0*pw, 1.0-d2) or
functions (for example, getval("pw");). Delays with a value of
zero are eliminated from the sequence. Negative delays are
set to zero and give a warning.

Variables of the int type are usually used to index the C
language loops and conditionals.

Arrays of char are used as flags (for example, dmm) or to
represent parameter names as in the statement
getval("pw").

The VnmrJ PSG library describes a special set of real- time
integer variables, named v1 to v42 (so called v- variables)
and a set of real- time integer tables, t1 to t60, that are
provided to perform calculations scan- to- scan. These
variables are special because their values in C point to
memory locations in the acquisition computer. These
v- variables and tables are initialized with specific
pulse- sequence statements rather than C expressions. Other
statements provide for calculation scan- to- scan using integer
real- time math and table math.

V- variables and tables are used primarily to set the phase
(for xample, txphase(v1) or txphase(t1)) and create
phase tables. All phases and phase tables in the VnmrJ PSG
are set as the product of a double phase- step and a
real- time multiplier. Notably, there are no phase statements
in the VnmrJ PSG that take a double as an argument.

long long integer 32 - occasionally used in the PSG

float floating point 32 - occasionally used in the PSG

double double-precision floating point 64 - often used

Table 4 C-Variable types used in pulse sequences

Type Description Length (bits)- use

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 59

V- variables are also are used to index scans (ct, ssctr,
and so on) and increments (id2, id3 and so on).

The real- time integer variables and the real- time integer
tables are represented in C as integer constants, whose
values are internally defined indexes. Statements such as
v1=v1+v2 or t1=t3 do math with the indexes, not the
values, and have no meaning in the usual sense.

Global PSG and real-time variables in multidimensional arrays

The PSG defines a set of global C variables to hold the
values from standard parameters. The appendix lists many
of these global variables. Usually a parameter that is
associated with a global variable has the same name, and
the value of the variable is set automatically. Global values
are automatically known within the pulsesequence function
and do not need a standard C definition. For
multidimensional experiments and arrays, these variables
hold their values increment- to- increment.

All other C user variables that are used in a pulse sequence
must be explicitly defined. A getval or a getstr statement
associates a parameter with the variable. User variables are
updated with each new multidimensional increment or array
element. They cannot store data increment- to- increment.

All of the variables that control multidimensional looping are
globals. A user can create a new global user variable, by
defining it as static in the sequence .c, file, outside the
pulsesequence function. For example the integer arrays that
are used to create phase tables are defined in this way.

It is good practice to reinitialize global variables if you know
that they should only have scope in a single increment. The
extra getval statement does not hurt. Also beware of
statements of the type rof2=rof2+2.0e-6; involving globals.
Because rof2 is a global variable it will increase by 2.0 µs
with each increment. This problem can be fixed by including
the statement getval("rof2") in the pulsesequence
function.

Real- time variables and tables, defined to exist on the
acquisition computer, may persist increment to increment
and a few real- time indexes (such as id2) count increments.
However, most real- time variables and tables are designed
for use within a single increment. It is good practice to
reinitialize these variables with each increment and index
v- variables to the scan counter ct. Never expect v- variables
and tables to remain defined increment- to- increment.

60 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Standard C- syntax is a linear list of C- language statements
and pulse- sequence statements, referencing the RF channels,
the gradients and the receivers. At run- time the compiled C
program sorts the resulting acodes to their appropriate
channels. By default, acodes are sorted with synchronous
syntax. With this syntax any statement that takes time also
places a corresponding delay on every other operational
channel. Use of synchronous syntax ensures that acodes are
executed sequentially. Statements that do not take time such
as xmtron and txphase are all executed at the beginning of
the next delay.

Alternatively the parallelstart and parallelend
statements create parallel, asynchronous syntax. The
parallelstart statement designates an individual channel
to receive acodes and corresponding delays are not applied
to other channels. Sequential parallelstart statements
referencing different channels allow one to individually
program the channels in parallel. The parallelend
statement calculates a set synchronization delays to
synchronously terminate the parallel channels and return to
synchronous syntax. The parallelsync statement allows
positioning of the synchronization delays in the parallel
sections for each channel.

Parallel programming is also obtained through the use of
waveforms and the nowait attribute of gradients.

The interleave function allows one to cycle through the
increments of a multidimensional array for a value bs scans.
Interleave requires that one save the real- time state of the
increment and return to it later for the next bs scans and in
this process real- time values can be lost. One can avoid any
complexity from interleave by indexing all v- variable
calculations to the scan counter ct and never expect
v- variables to survive scan- to- scan.

Assigning transmitters and receivers

Most pulse- sequence statements begin with the prefixes obs,
dec, dec2, dec3, and dec4. The prefixes designate the
pulse- sequence channel to which the statement applies.
When used alone, they designate the pulse- sequence channel
itself. A pulse- sequence channel is a logical structure in the
pulse program that directs pulse- sequence statements to a
particular transmitter, whose identity is decided at run- time.

A transmitter (in contrast to a channel) refers to the
synthesizer, gating, and amplifier hardware that are used to

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 61

generate pulses at a particular probe port. A VNMRS for
spectroscopy can have up to five transmitters, labeled 1 to 5
from right to left in the RF card cage.

A receiver is RF hardware for signal detection including a
digital receiver card in the acquisition computer. All NMR
Systems for spectroscopy have at least one receiver, which
can be associated with any transmitter. Some multi- receiver
systems for spectroscopy have two or more receivers, up to a
possible total of four.

Imaging systems may have an arbitrary number of
transmitters and receivers. Systems with 16 and 32
transmitters and receivers are used. The software used to
control imaging transmitters and receivers is described in
the Guide to Imaging.

For VNMRS, all pulse- sequence channels are equivalent and
they can be assigned to any transmitter. Most NMR Systems
for spectroscopy are configured with a high- band transmitter
1 and a low- band transmitter 2. The uses of transmitters 3
to 5 depend upon the specific hardware configuration. By
default, the obs and dec channels are designated as 1 and 2
if the spectrometer frequency is greater than 85% of the
proton frequency. Otherwise they are designated 2 and 1.
The channels dec2 to dec4 are assigned to transmitters 3 to
5 in order. The parameters probeConnect or rfchannel can
be used to obtain any other assignment.

For single- receiver mode, the obs channel is designated as
the channel for acquisition (it gets the receiver). Additional
receivers are hardwired to specific transmitters. For a
standard two- receiver system the second receiver is found
on channel 3. Consult the documentation for the
configuration of custom multi- receiver systems. Additional
recievers are assigned to the same pulse- sequence channel
as their respective transmitter*, based on either the defaults
or the use of probeConnect or rfchannel. *Earliest versions
of VnmrJ required that the user assign channel 3 with the
second receiver to dec. This restriction is lifted in recent
software versions.

The words obs, dec, dec2, dec3 and dec4, despite their
meaningful names, no longer strictly denote "observation" or
"decoupling". Any channel can be assigned to any transmitter
for either pulsing or decoupling. The obs channel is unique
in that it is always used with a receiver, irregardless of the
transmitter to which it is assigned. However the channels
dec, dec2, dec3 and dec4 can also be used for observation
if their assigned transmitter is hardwired to one of the

62 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

additional receivers.

The configuration file must designate a number of channels
greater than or equal to that referred to in the sequence. A
3- channel sequence cannot be used on a 2- channel
spectrometer. The configuration file identifies a system as
single- receiver or multiple- receiver for spectroscopy. If
multiple receivers are configured, the string parameter rcvrs
designates the receivers to be used. Gradient statements are
assigned to the appropriate gradient controller, either PFG
or imaging, which is designated in the VnmrJ configuration
file.

Customizing the PSG software

Most of the .c and .h source- code files in the directory
/vnmr/psg are precompiled as C- code object files with a .o
extension and assembled in an object library libpsglib.so.
A copy of this library /vnmr/lib/libpsglib.a is link- loaded
with the pulse- sequence object file pulsesequence.o. to
create the fully compiled sequence whenever seqgen is used
to compile a pulse sequence. A user must recompile the
object library to make a change in one of the PSG source
files. The recompiled object library is referred to as a user
PSG. It is stored in the directory ~/vnmrsys/psg of an
individual Linux user and it only affects sequences for that
user.

You can replace /vnmr/psg/libpsglib.so using the Linux
copy command, but this action is usually not recommended.
This action would affect every sequence that any user might
subsequently compile (possibly to ill effect) and the new
object library might be lost with a software upgrade.

To create a user PSG, run the Linux script
/vnmr/bin/setuserpsg in a terminal window. This script
creates the directory ~/vnmrsys/psg for a user if it does not
already exist and it initializes this user psg directory with
the all the object files from the system psg directory and an
object library libpsglib.a.

To make a change, copy the source files that are to be
changed to ~/vnmrsys/psg and make the desired changes
with a text editor.

The Linux script /vnmr/bin/psggen compiles the user
source files, links them with the other object files in
~/vnmrsys/psg, and creates a new file object library
libpsglib.a. When seqgen is executed in a user, it first
looks for ~/vnmrsys/psg/libpsglib.a. The system library is

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 63

used if a user library is not found. Applications directories,
designated from Edit Applications of the Edit pull- down
menu, are not used by seqgen. Include files in applications
directories are used by seqgen.

The Linux script /vnmr/bin/fixpsg recompiles the files in
/vnmr/psg and places the resulting library in /vnmr/lib. One
must have write permission to /vnmr in order to use this
script. The fixpsg script is most often used during the
installation of a patch for VnmrJ when the patch includes
PSG files.

64 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Pulse-Sequence Statements

This section contains information on pulse- sequence
statements in VnmrJ.

Creating a time delay

The statements to provide time delays are delay, hsdelay,
and vdelay. Table 5 summarizes these statements.

Use delay(time) to set a specified time delay, where time
is a double, for example delay(d1). The value of time is
rounded to the resolution depending on the transmitter
version. Transmitters for the DD2 MR system, have a 25 ns
minimum step and a 12.5 ns resolution. Transmitters for
older systems have a 50 ns step and a 12.5 ns resolution.
Consult the configuration file to determine which transmitter
is present.

Use hsdelay(time) to create a delay with a homospoil
pulse. To add a homospoil pulse to the delay, set the
homospoil parameter hs to 'y'. A z1- axis homospoil pulse
of length hst seconds is inserted at the beginning of the
delay.

Use vdelay(timebase,count) to set a delay to the product
of a fixed timebase and a real- time count, for which
timebase is NSEC (nanoseconds), USEC (microseconds), MSEC
(milliseconds), or SEC (seconds) and count is one of the
real- time variables (v1 to v42). For NSEC, the minimum
delay is a count of either 2 or 4 (25 ns or 50 ns) depending
on the transmitter, a count of less than the minimum
corresponds to a delay of 0.0, and a count of n corresponds
to a delay of 12.5*n ns.

The double argument time of delay and hsdelay is fixed at
run- time and so the delay statement cannot change its
value scan- to- scan or in real- time loops and conditionals.
The statement vdelay takes a real- time integer count as an
argument and so its delay can change scan- to- scan or in
real- time loops and conditionals.

Table 5 Statements for Creating Time Delays

delay(time) Delay a specified time.

hsdelay(time) Delay a specified time with a homospoil pulse.

vdelay(timebase,
count)

Set a real-time variable delay.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 65

Assigning transmitters and receivers to channels

The labels obs, dec, dec2, dec3, and dec4 refer to a
possible five pulse- sequence, spectroscopic channels. These
channels are assigned to transmitters at run- time by default
or optionally by using the parameters probeConnect or
rfchannel. The global variables tn, dn, dn2, dn3, and dn4
set the nuclei associated with each pulse- sequence channel.
The global variables sfrq, dfrq, dfrq2, dfrq3, and dfrq4
store the digital- synthesizer frequencies for each channel.
These frequencies are both transmitter frequencies of pulses
and the center frequencies for channels with receivers (when
roff=0.0). The global PSG variables OBSch, DECch, DEC2ch,
DEC3ch, and DEC4ch store the transmitter assignment for
each channel, where 1, 2, 3, 4, and 5 refer to transmitters
from right to left in the RF card cage.

By default, the high- band transmitter, labeled '1', is
assigned to obs if sfrq is greater than 85% of the proton
frequency and in this case the low- band transmitter '2' is
assigned to dec. If sfrq is less than 85% of the proton
frequency, the assignment is reversed. The dec2, dec3, and
dec4 channels are assigned to transmitters '3', '4', and
'5' respectively.

The global parameter probeConnect provides an automatic
procedure to assign transmitters, based on the user
configuration of transmitters to probe ports. The
probeConnect string holds the designations of nuclei,
seperated by spaces, from left to right, that are associated
with each transmitter from '1' to '5'. The user assigns this
list based upon the probe, tuning configuration. The value of
each nucleus parameter tn, dn, dn2, dn3, to dn4 is
compared with the entry in probeConnect to assign a
transmitter to a pulse- sequence channel.

The current parameter rfchannel assigns transmitters from
the parameter table. The parameter rfchannel is a string
whose character- places, 0 to 4, represent the pulse- sequence
channels, obs to dec4. The characters are '1' to '5',
designating the VNMRS transmitters. The parameter
rfchannel should contain at least one character for each
transmitter, up to the number of channels numrfch. The
parameter rfchannel overrides probeconnect and to avoid
confusion, probeConnect should not be created if rfchannel
is used.

The transmitter assignments can be viewed on the Channels
page of the Acquisition tab in the upper right corner of each

66 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

channel display.

 Any of the first four transmitters can be designated obs and
used with the first receiver. For two receivers, the second
receiver is hardwired to transmitter '3'. The assignment of
this receiver to a pulse- sequence channel follows that of
transmitter '3'. For greater than two receivers you must
consult the information about the hardware configuration to
determine the association of transmitter- receiver pairs. The
assignments of receivers to pulse- sequence channels for
recievers greater than the first follow rfchannel or
probeConnect.

The current rcvrs string parameter determines whether
receivers are on or off. The placeholders of rcvrs refer to
the first, second, third receivers, etc, up to the number of
receivers. The character 'y' means acquisition takes place
and 'n' means the receiver is not used. If rcvrs exists, at
least one receiver must be selected. If rcvrs does not exist
or is not set, acquisition takes place on obs only.

Transmitter pulses

Statements to provide an RF pulse on a transmitter are
described in Table 6.

Table 6 Statements to create transmitter pulses

decpulse(width,phase) Pulse the dec channel with RG1=0 and
RG2=0.

decrgpulse(width,phase,R
G1,RG2)

Pulse the dec channel with RG1 and
RG2 delays.

dec2rgpulse(width,phase,
RG1,RG2)

Pulse the dec2 channel with RG1 and
RG2 delays.

dec3rgpulse(width,phase,
RG1,RG2)

Pulse the dec3 channel with RG1 and
RG2 delays.

dec4rgpulse(width,phase,
RG1,RG2)

Pulse the dec4 channel with RG1 and
RG2 delays.

obspulse() Pulse the obs channel with
RG1=rof1 and RG2=rof2,
width=pw and phase=oph.

pulse(width,phase) Pulse the obs channel with
RG1=rof1 and RG2=rof2

rgpulse(width,phase,RG1,
RG2)

Pulse the obs channel with RG1 and
RG2 delays.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 67

The statement rgpulse(width,phase,RG1,RG2) (See
Figure 1) supplies a pulse to the obs transmitter, in which
width is the pulse width in seconds, phase is a table or a
real- time integer designating a quadrature phase, RG1 is a
predelay, and RG2 is a postdelay in seconds. The phase is set
and the amplifier is unblanked at the beginning of RG1. The
transmitter is gated on at the beginning of width and gated
off at the beginning of RG2. The transmitter is blanked at the
end of RG1 unless an explicit rcvroff statement has been
executed sometime before the rgpulse statement. If rcvroff
has been set, the transmitter remains unblanked after RG1.

The rcvroff statement is a compound statement that blanks
the transmitter, sets the blanking mode of rgpulse, and
turns off the receiver.

The statement pulse(width,phase) is similar to rgpulse
except that RG1=rof1 and RG2=rof2.

The statement decpulse(width,phase) is similar to
decrgpulse except that RG1=0.0 and RG2=0.0.

The statement obspulse() is similar to pulse(width,phase)
except that width=pw and phase=oph.

The global variables rof1, rof2, and pw are global PSG
variables for the standard amplifier unblanking delay, the
standard receiver blanking delay and the standard pulse
width, respectively, and they are automatically obtained from
parameters of the same name. The phase variable oph is also
the default receiver phase and it is set to 0, 1, 2, 3 unless
cp, (constant phase) is 'y'. In this latter case, oph=0. It is
usual practice to set oph with an explicit phase table, using
the setreceiver command.

The RF and phase behavior of the statements decrgpulse,
dec2rgpulse, dec3rgpulse, and dec4rgpulse are similar to

Figure 1 Transmitter Gating for an Observe Pulse

68 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

rgpulse for their respective channels dec, dec2, dec3, and
dec4.

It is a good practice to use only the statements rgpulse,
decrgpulse, dec2rgpulse, dec3rgpulse and dec4rgpulse
and explicitly set the values of width, phase, RG1, and RG2.
This practice eliminates ambiguity from the pulse- sequence
code. The statements pulse, decpulse, and obspulse should
be considered obsolete.

Controlling blanking for observe pulses

Control of transmitter blanking is important for obtaining
the best quality data. When unblanked, amplifiers are on
and can amplify a pulse, when blanked they are off and
produce no output. An unblanked amplifier can have noise
output that can potentially reduce signal- to- noise during
acquisition. Also an unblanked amplifier runs hotter than a
blanked amplifier. The transition between extensive periods
of blanking and other periods of unblanking can cause
thermal amplitude instability.

For experiments for which pulses are sparse in time (most
liquids experiments), it is best to blank all transmitters at
every moment they are not producing RF. The standard
rof1=2.0 is adequate time to unblank before a pulse.

For experiments that use extensive spinlocking and
decoupling (most solids experiments), it is best to unblank
the amplifiers at all times other than the acquisition.

For most liquids sequences, it is desirable that the
transmitter blank after RG1 and rcvroff is rarely used.
Usually RG1 is set as rof1 or 2.0 and RG2 as 0.0. One might
set RG2 as rof2 if the pulse precedes an acquisition. A
slightly better practice is to set RG2=0.0 and explicitly add
obsblank(); delay(rof2);. With this improvement, the
transmitter blanks at a slightly earlier time before
acquisition and rof2 can be shorter.

To provide back- to- back pulses, with no intervening delay,
set RG1 and RG2 as 0.0 and place the pulses adjacent to
each other in the code.

Many solids sequences employ rcvroff to keep the observe
transmitter unblanked until acquisition. In this case, one
must place an obsblank statement after the last rgpulse,
just before delay(rof2).

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 69

Controlling blanking for non-observe pulses

In default mode, only observe channels or channels in the
same band as an observe channel can be blanked.
Non- observe channels remain in continuous mode. To blank
non- observe channels, you create the current string
parameter ampmode, in which the character- places refer to
transmitters, '1' to '5'. The character 'd' indicates
default, the character 'p' indicates pulsed or “blanking
allowed”, and the character 'c' indicates continuous or
“blanking not allowed”.

If blanking is allowed, the statements decrgpulse,
dec2rgpulse, dec3rgpulse, and dec4rgpulse behave as
rgpulse on their respective channels dec, dec2, dec3, and
dec4, with the exception that amplifier blanking always
occurs (if allowed by ampmode) at the end of RG1 (rcvroff
has no effect). If blanking is not allowed, then these
channels remain unblanked between pulses.

 must be sufficiently long to allow the amplifier to stabilize
after blanking is removed: 5 s is typically right.

Pulsing channels simultaneously

Statements for controlling simultaneous, non- shaped pulses
are simpulse, sim3pulse, and sim4pulse. Table 7
summarizes these statements. Simultaneous- pulse statements
using shaped pulses are covered in a later section.

Use simpulse(obswidth,decwidth,obsphase,decphase,RG1,RG2)
to simultaneously pulse the obs and dec channels with amplifier
gating, for example, simpulse(pw,pp,v1,v2,0.0,rof2).

Table 7 Statements for simultaneous pulses

simpulse* Pulse the obs and dec channels simultaneously.

sim3pulse* Pulse the obs, dec and dec2 channels simultaneously.

sim4pulse* Pulse the obs, dec, dec2 and dec3 channels simultaneously.

*simpulse(obswidth,decwidth,obsphase,decphase,RG1,RG2)

*sim4pulse(obswidth,decwidth,dec2width,obsphase,
decphase,dec2phase,RG1,RG2)

*sim4pulse(obswidth,decwidth,dec2width,dec3width,
obsphase,decphase,dec2phase,dec3phase,RG1,RG2)

70 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

The shorter of the two pulses is centered on the longer
pulse. The RG1 and RG2 delays surround the longer pulse.
Phase shifting, blanking, and unblanking for both channels
are similar to rgpulse and decpulse and occur
simultaneously on both channels. If they are not identical,
the absolute difference in the two widths must be greater
than or equal to two times the minimum resolution of the
transmitter. Otherwise, a timed event of less than the
minimum value (25 ns or 50 ns) would be produced.

The statement sim3pulse(obswidth,decwidth,dec2width,
obsphase,decphase,dec2phase,RG1,RG2) performs a
simultaneous pulse on the obs, dec, and dec2 transmitters,
in which obswidth, decwidth, and dec2width are the pulse
durations for the respective transmitters and obsphase,
decphase, and dec2phase are the phases tables for the
corresponding pulses, for example,
sim3pulse(pw,p1,p2,oph,v10,v1,rof1,rof2).

Two simultaneous pulses on obs and dec2 can be achieved
by setting decwidth to 0.0 and setting a dummy v- variable
for decphase, for example,
sim3pulse(pw,0.0,p2,oph,v10,v1,rof1,rof2). In this case,
no events take place on the dec channel and functions such
as wave from decoupling are not interrupted.

Use sim4pulse(obswidth,decwidth,dec2width,dec3width,

Figure 2 Transmitter gating for simultaneous pulses

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 71

obsphase,decphase,dec2phase,dec3phase,RG1,RG2) to
perform simultaneous pulses on as many as four different
RF channels. If any pulse width is set to 0.0, no pulse is
executed on that channel.

Setting quadrature phase shifts

The statements txphase, decphase, dec2phase, dec3phase,
dec4phase control transmitter phase in multiples of 90°,
also known as quadrature phase. Table 8 summarizes these
statements.

To set the obs transmitter phase, use txphase(phase) for
which phase is a real- time variable (v1 to v42, etc), a
real- time constant (zero, one, etc), or a phase table t1 to
t60.

Use txphase to set the phase of the obs transmitter
separately from a pulse. It is a good practice to set the
phase at the beginning of the preceding delay, unless a value
of RG1 is set greater than zero for the rgpulse. The
transmitter takes a finite time to be settle (about 50 ns) and
it is best if this change were to occur with the transmitter
off. Use the same phase for txphase as that for rgpulse.

Use txphase to create generic back- to- back pulses, avoiding
the use of rgpulse. The code: txphase(t1); obsunblank();
delay(rof1); xmtron(); delay(pw); txphase(t2);
delay(pw); xmtroff(); obsblank(); creates a composite
pulse made of two widths pw using two phase tables t1 and
t2. It is necessary to unblank the transmitter explicitly in
this case and rof1 should be at least 2.0 µs. Also it is a
good practice to deliver the txphase command before the
rof1 period.

The statements decphase, dec2phase, dec3phase and
dec4phase are similar to txphase for their respective
channels.

Table 8 Statements for quadrature phase control

decphase(phase) Set the phase of the dec channel in steps of 90°.

dec2phase(phase) Set the phase of the dec2 channel in steps of 90°.

dec3phase(phase) Set the phase of the dec3 channel in steps of 90°.

dec4phase(phase) Set the phase of the dec4 channel in steps of 90°.

txphase(phase) Set the phase of the obs channel in steps of 90°.

72 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Setting small-angle phase shifts

The DD2 MR system has a phase resolution of 16 bits or
360.0/65536, about 0.0055 degrees per step. The statements
in Table 9 are used to set the phase with full resolution.
Current hardware sets the phase to the full resolution of the
software.

The xmtrphase(multiplier) statement is used to set the full
small-angle phase where phase in degrees is base*multplier
and multiplier is a real- time variable (v1 to v42, etc), a
real- time constant (zero, one, etc) or a phase table t1 to t60.
The variable base is a double whose value is the phase step in
degrees.

The obsstepsize(base) statement uses the double
parameter base (in degrees) to provide the stepsize of the
small- angle phase shift for the obs transmitter. The base can
be changed any time during the sequence.

The phase itself is never set directly in degrees, it is always
a multiple of base and a real- time integer or table. If a
non- quadrature phase cycle is required, for example
0,60,120,180,240,300 degrees, then base = 60.0, and the
multiplier is a table containing the values 0,1,2,3,4,5. Note
that the phase must be set with the xmtrphase statement
because rgpulse does not accept a non- quadrature phase. It
is good practice to set xmtrphase at the beginning of the
preceding delay and then use a phase constant of zero in
rgpulse.

The xmtrphase statement has precedence over the txphase

Table 9 Statements for small-angle phase control

dcplrphase(multiplier) Set the small-angle phase of the dec channel.

dcplr2phase(multiplier) Set small-angle phase of the dec2 channel.

dcplr3phase(multiplier) Set small-angle phase of the dec3 channel.

dcplr3phase(multiplier) Set small-angle phase of the dec4 channel.

decstepsize(base) Set the step size of the dec channel.

dec2stepsize(base) Set the step size of the dec2 channel.

dec3stepsize(base) Set the step size of the dec3 channel.

dec4stepsize(base) Set the step size of the dec4 channel.

obsstepsize(base) Set the step size of the obs channel.

xmtrphase(multiplier) Set the small-angle phase of the obs channel.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 73

statement. If a txphase statement follows an xmtrphase
statement, it will change only that portion of the phase that
is a multiple of 90°. For example, if the phase is set to 240°
with an xmtrphase statement, txphase(zero) will leave the
phase at 60° and txphase(two) will leave the phase
unchanged. If the txphase statements were delivered before
the xmtrphase statement, the final phase would be 240° in
both cases. Use xmtrphase(zero) to remove any remaining
small- angle phase.

The VNMRS can contain one of two different phase shifters,
a 13- bit phase shifter with a resolution of 360.0/8192 =
~0.043° or a 16- bit phase shifter with a resolution of
360.0/65536 = ~0.0055°. The value of base*multiplier is
set by the hardware to the nearest allowed phase step.
Consult the configuration file to determine which device is
present.

To set phases with full resolution, use
obsstepsize(360.0/65536) (or 360.0/8192 for the 13- bit
device). Phases can be set in apparent “degrees” by using
1.0° resolution with obstepsize(1.0).

The statements dcplrphase, decstepsize, dcplr2phase,
dec2stepsize, dcplr3phase, dec3stepsize, dcplr4phase,
and dec4phase are similar to xmtrphase and obstepsize,
for their respective channels.

Controlling the frequency offset

Statements for frequency control are obsoffset, decoffset,
dec2offset, dec3offset and dec4offset. Table 10
summarizes these statements.

Each transmitter of a VNMRS has a digital frequency
synthesizer that sets both the frequency of the transmitter
and the center frequency of the receiver (when roff=0).
Each synthesizer is set automatically using the global PSG
variables sfrq, dfrq, dfrq2, dfrq3 and dfrq4, before the

Table 10 Statements to control frequency-offset

decoffset(offset) Set the offset frequency of the dec channel.

dec2offset(offset) Set the offset frequency of the dec2 channel.

dec3offset(offset) Set the offset frequency of the dec3 channel.

dec4offset(offset) Set the offset frequency of the dec4 channel.

obsoffset(offset) Set the offset frequency of the obs channel.

74 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

first scan. These frequencies, in MHz, are set from a base
frequency for the nucleus (tn, dn, dn2, dn3, and dn4) plus a
default offset in Hz, determined by the global PSG variables
tof, dof, dof2, dof3, and dof4. If offset parameters are not
present the default is 0.0.

The statement obsoffset(offset) is used to reset the offset
during the sequence. The argument offset is double value
in Hertz that sets the frequency with 0.1 Hz resolution. The
statements that change the synthesizer affect both the
transmitter and the receiver and they are not automatically
reset during the sequence. One should explicitly initialize the
offset to the default tof at the beginning of the sequence if
the offset is to be changed within the sequence. Failure to
do so will cause scans greater than 1 to have the wrong
offset.

The obsoffset statement adds about a 1.0 s delay to allow
time to send the new frequency word to the synthesizer. If
required, you should account for this delay in
pulse- sequence timing.

It is a good practice to limit the use of the obsoffset
statement in pulse sequences. Because a change in the
synthesizer affects the receiver, an incorrect change of the
offset can cause the receiver to lose phase coherence
scan- to- scan. The frequency change caused by obsoffset is
not guaranteed to be phase continuous. It is a good practice
to change the offset only during delays where the spins are
along a Z axis.

Current systems can create a specific transmitter offset
through the calculation of phase- ramped shaped pulse or
waveform. This latter procedure is recommended over the
use of obsoffset.

The decoffset, dec2offset, dec3offset and dec4offset
statements are similar to obsoffset for their respective
channels.

Controlling the transmitter power

The system controls the transmitter power through two
devices:

• A step attenuator set in dB units of power, also called the
“coarse attenuator”.

• A linear modulator set in units porportional to RF
voltage, also called the “fine power” or “amplitude”.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 75

Separate statements control each device. Table 11
summarizes these statements.

Coarse attenuator control

The statement obspower(value) takes a double as an
argument and can set value with resolution of up to 0.5 dB
and a maximum of 63.0. The setting of 63.0 corresponds to
maximum power of the associated amplifier. A change of
- 6.0 dB attenuates the power by x4 and the RF amplitude by
x2.

The DD2 MR system contains a 100 dB attenuator with a
minimum setting of - 37.0 dB and steps of 0.5 dB. Older
systems contain a 79.0 dB attenautor with a minimum of
- 16.0 dB and allowed steps of 1.0 dB. Consult the
configuration file to determine which device is present.

If the 100 dB attenuator is present, value settings are
rounded to the nearest 0.5 dB and steps below - 37.0 are set
to - 37.0. If the 79 dB attenuator is present, value settings
are rounded to the nearest whole number and settings below
- 16.0 are set to - 16.0. A change of 0.5 dB can have a
significant effect on the pulse width (about 6%). Be cautious
when using calibrations obtianed with 0.5 dB resolution on a
system with 1.0 dB resolution.

Each transmitter is set with default values, using the global
PSG variables tpwr, dpwr, dpwr2, dpwr3, and dpwr4, before
the first scan. If parameters of the same name do not exist
in the data set, the coarse power is initialized to 0.0.
Individual statements that set the coarse power can be used
to override the default values during the sequence.

Table 11 Statements for amplitude and power control

decpower(value) Set the coarse attenuator for the dec channel.

dec2power(value) Set the coarse attenuator for the dec2 channel.

dec3power(value) Set the coarse attenuator for the dec3 channel.

dec4power(value) Set the coarse attenuator for the dec4 channel.

decpwrf(value) Set the amplitude for the dec channel.

dec2pwrf(value) Set the amplitude for the dec2 channel.

dec3pwrf(value) Set the amplitude for the dec3 channel.

dec4pwrf(value) Set the amplitude for the dec4 channel.

obspower(value) Set the coarse attenuator for the obs channel.

obspwrf(value) Set the amplitude for the obs channel.

76 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

The power is never reset to the default values automatically.
It is necessary to explicitly initialize the power tpwr at the
beginning of the sequence if it is changed within the
sequence. Failure to do so will cause scans greater than 1 to
have the wrong power. Despite the default, it is good
practice to initialize the power explicitly with the statement
obspower(tpwr).

The obspower statement itself adds 50 ns to the pulse
sequence. The setting time of the coarse attenuator is about
3.0 µs after the statement and an attenuator change also
causes a transient during this period. It is a good practice to
allow a 3.0 µs delay for settling after the obspower statement
and to blank the transmitter during this time. You should
never set obspower while the transmitter is on.

The decpower, dec2power, dec3power and dec4power
statements are similar to obspower for their respective
channels.

Amplitude control

The statement obspwrf(value)takes a double as an
argument and sets the linear modulator in 16- bit linear
steps of linear RF amplitude with a miximum of 4095.0 and
a minimum of 0.0. The setting of 4095 corresponds to the
power set by tpwr. A division of the setting by x2
corresponds to attenuation of the RF amplitude by x2 and
the power by x4. The linear modulator hardware has a
maximum attenuation of x1000 for settings around 0.0.
Settings around 0.0 cease to be linear.

A VNMRS may contain one of two linear modulators:

• The DD2 MR system contains a 16- bit device with a
stepsize of 4095/65536 = ~0.062.

• Older systems contain a 12- bit device with a stepsize of
4095/4096 = ~1.0.

CAUTION Use caution when setting values of power, obspower, decpower,
dec2power, and dec3power greater than 49 (about 2 watts).
Performing continuous decoupling or long pulses at power levels
greater than this can result in damage to the probe. Set a maximum
safety limit for the tpwr, dpwr, dpwr2, and dpwr3 parameters in the
Utilities > System Settings window or use global variable
maxattnech1, maxattnech2, to have PSG (the go command) check
for power values in excess of defined limits.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 77

The setting of value is rounded to the appropriate
resolution by the hardware. For the 12- bit attenuator,
rounding always corresponds to a truncation to a whole
number between 0 and 4095. The 16- bit attenuator accepts
decimal values. Consult the configuration file to determine
which device is present.

The global PSG variable tpwrf, dpwrf, dpwrf2, dpwrf3, and
dpwrf4 set the default amplitude for each channel before the
first scan. If parameters of the same name do not exist in
the data set, the amplitude is initialized to 4095.0.
Individual statements that set the amplitude can be used to
override the default values during the sequence.

The amplitude is never reset automatically during the
sequence. It is necessary to explicitly initialize the amplitude
at the beginning of the sequence if it is changed within the
sequence. Failure to do so will cause scans greater than 1
to have the wrong amplitude. Despite the default, it is good
practice to initialize the amplitude explicitly with the
statement obspwrf(tpwr).

The amplitude statements add no time to the sequence and
amplitude changes have a settling time of 50 ns.

The decpwrf, dec2pwrf dec3pwrf and dec4pwrf statements
are similar to obspwrf for their respective channels.

Explicit transmitter gating

The transmitter gating statements gate the RF on and off
outside of pulses. Table 12 summarizes these statements.

Table 12 Statements for transmitter gating

decoff() Gate the dec channel off.

dec2off() Gate the dec2 channel off.

dec3off() Gate the dec3 channel off.

dec4off() Gate the dec4 channel off.

decon() Gate the dec channel on.

dec2on() Gate the dec2 channel on.

dec3on() Gate the dec3 channel on.

dec4on() Gate the dec4 channel on.

xmtroff() Gate the obs channel off.

xmtron() Gate the obs channel on.

78 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

The xmtron statement turns on the obs channel RF and the
xmtroff statement turns it off. The obs transmitter must
also be unblanked to obtain a pulse.

RF gating adds no time to the sequence. The RF gate has a
50 ns settling time.

The xmtron statement is used to deliver a generic pulse or
decoupling period without the use of rgpulse or status.

The decon, decoff, dec2on, dec2off, dec3on, dec3off,
dec4on, and dec4off statements are similar to xmtron and
xmtroff for their respective channels, dec, dec2, dec3, and
dec4.

Transmitter blanking and unblanking

The statements for transmitter blanking and unblanking are
shown in Table 13.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 79

The obsunblank statement gates on the amplifier of the obs
channel independently from rgpulse. The obsblank
statement gates off the amplifier of the obs transmitter. See
the discussion of amplifier blanking under the section
Transmitter Pulses.

The blanking and unblanking statements add no time to the
sequence but have a transition time of 2 s. The global PSG
variable rof1 and its associated parameter of the same
name are often used to set a delay between an obsunblank
statement and an xmtron statement. The value of rof1 is
often used to set RG1 of an rgpulse.

The decunblank, decblank, dec2unblank, dec2blank,
dec3unblank, dec3blank, dec4unblank, and dec4blank
statements are similar to obsunblank and obsblank for their
respective channels, dec, dec2, dec3, and dec4. See the
discussion of ampmode in the section Transmitter Pulses.

Table 13 Statements for amplifier blanking and unblanking

decblank() Blank the amplifier associated with the dec channel.

dec2blank() Blank the amplifier associated with the dec2 channel.

dec3blank() Blank the amplifier associated with the dec3 channel.

dec4blank() Blank the amplifier associated with the dec4 channel.

decunblank() Unblank the amplifier associated with the dec channel.

dec2unblank() Unblank the amplifier associated with the dec2 channel.

dec3unblank() Unblank the amplifier associated with the dec3 channel.

dec4unblank() Unblank the amplifier associated with the dec4 channel.

obsblank() Blank the amplifier associated with the obs channel.

obsunblank() Unblank the amplifier associated with the obs channel.

80 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

The status statements

The statements status and statusdelay set the state and
modulation of the obs, dec, dec2, dec3, and dec4 channels
based on values in the parameter table. These statements
execute statements for transmitter gating and/or set a
waveform for modulation.

*setstatus(transmitter,on,mode,sync,mod_freq)

The status(period)statement accepts a single character
argument A, B, C, etc that begins a region of the pulse
sequence, a status period. The next statement ends the first
region and begins the next region.

• The global string PSG variables xm, dm, dm2, dm3, and dm4 (obs to
dec4) and their parameters of the same name are used to set a
transmitter gate on and off. A 'y' or an 's' indicates that the
transmitter is on and a 'n' indicates that the transmitter is off during
the appropriate status period. The character placeholders refer to the
arguments A, B, C, etc in order. The modulation is applied
synchronously if the value is 's'. If the value is 'y', the modulation is
applied asynchronously. For the asynchronous mode, the starting
phase of the modulation is adjusted randomly scan-to-scan to
suppress decoupling sidebands.

• For example, it is common usage to set status(A)at the beginning
of the sequence and to set status(C)during acquisition. Some
sequences may also have a separate period status(B). The
parameter assignment dm='nny' sets decoupling only during
acquisition. dm='y' or 'yyy' sets uninterrupted decoupling on
dec. Note that a character for B must be present if status(C)is
used, even though status(B)is not used in the sequence.

• The global string PSG variables variables xmm, dmm, dmm2, dmm3,
and dmm4 (obs to dec4) and their parameters of the same name are
used to set a modulation pattern during the status periods. Allowed
characters, for example, are 'c' for continuous decoupling, 'w' for
WALTZ decoupling and 'p' for programmed decoupling. See the
Command and Parameter Reference for more details about the
choices.

Table 14 Status statements

setstatus* Set the gate and modulation with
arguments in the sequence.

status(period) Set the gate and modulation from parameters.

statusdelay(period,time) Execute the status statement within a delay.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 81

• The statement statusdelay(period,delay)encapsulates the
status statement in a delay that is determined by the second
argument. This statement is usually unnecessary for VNMRS
because the operations of status take no time, though it might be
used to preserve compatibility with Unity-series systems.

The statement
setstatus(transmitter,on,mode,sync,mod_freq)is used
to set the state and modulation of any channel from within
the pulse sequence. The argument channel is one of the
global PSG variables OBSch, DECch, DEC2ch, DEC3ch, or
DEC4ch that assigns a transmitter; on is TRUE to set the
transmitter on or FALSE to set it off, mode sets the
modulation pattern ('c', 'g', 'p', etc), and mod_freq is the
modulation frequency. The modulation frequency is the
inverse of the minimum step size, as determined by the dres
parameter used with the pattern. The argument sync is TRUE
or FALSE. A value of FALSE randomizes the initial timing of
the pattern relative to each scan to reduce decoupler
sidebands. A value of TRUE lets the modulation pattern
proceed deterministically. A common example is
setstatus(DECch,TRUE,'w',FALSE,dmf).

Status periods are also used to control the presence or
absence of a homospoil pulse during a delay set with
hsdelay. The string parameter hs determines the state of
the homospoil pulse. A character of 'y' enables the pulse and
'n' disables it. For example, if a particular pulse sequence
uses status(A), status(B), and status(C)during
acquisition, hs='ny' will disable homospoil in period A and
enable it in B. Only two letters are needed because there
would never be an hsdelay statement during an acquisition
period.

Receiver gating

Explicit receiver gating in the pulse sequence is controlled
by the rcvroff, rcvron, recoff, and recon statements. These
statements are described in Table 15.

Table 15 Statements for receiver gating

rcvroff() Set the receiver off, the T/R switch on and unblank the obs amplifiers.

rcvron() Set the receiver on the T/R switch off and blank the obs amplifiers.

recoff() Set the receiver gate off and the T/R switch on.

recon() Set the receiver gate on and the T/T switch off.

82 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Interfacing to external user devices

Table 16 shows statements that are used to trigger and
receive triggers from external devices.

The console provides User TTL BNC Outputs in the
transmitter 1 section of the Console Interface Panel on the
back of the console. The equivalent outputs on other
transmitters are redundant. The commands sp1on, sp2on,
and sp3on enable a positive TTL output on the respective
ports, top to bottom. The commands sp1off, sp2off, and
sp3off enable a negative TTL output.

The VNMRS provides a BNC external trigger for
pulse- sequence operation on the EXT TRIG port by the
USER OUTPUTS group on the Console Interface Panel. In
addition, three other external trigger ports are located on
the MRI User Panel of imaging systems. The MRI ports are
labeled INPUT 1, 2, or 3 in the EXT TRIG group.

The statement xgate(pulses)halts all RF transmitters and
the receivers simultaneously and holds them off until a
positive trigger is received on the EXT TRIG port of the
Console interface panel. The argument pulses is a double
that sets the number of positive trigger pulses before
resuming the sequence.

The statement triggerSelect with arguments A, B, and C
selects one of the three BNC inputs on the MRI user panel.

Table 16 Statements to interact with external devices

rotorperiod(value) Determine the period of an external signal and
set a real-time value.

rotorsync(periods) Delay for an integer number of periods of
an external signal.

sp1off() Set TTL port 1 off.

sp2off() Set TTL port 2 off.

sp3off() Set TTL port 3 off.

sp1on() Set TTL port 1 on.

sp2on() Set TTL port 2 on.

sp3on() Set TTL port 3 on.

triggerselect(select) Select ports 1,2 or 3 on the MRI interface
board with A,B or C.

xgate(pulses) Halt all controllers and start after an integer
number of pulses.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 83

Real-Time Control of Pulse Sequences

This section contains information on programming real- time
control of pulse sequences.

Real-time integer variables and constants

The variables and constants listed in Table 17 are used for
real- time calculations, to set real- time indexes, and as
integer multipliers to set the phase.

Real- time v- variables are C- integer constants whose values
index 32- bit integer values on the acquisition computer. The
values on the acquisition computer can be changed in
real- time, scan- to- scan with a set of real- time math
statements.

The real- time values of the variables v1 to v42 are
automatically initialized to 0. The constants such as zero,
one, etc are initialized to 0,1, etc as suggested by their
names. The constants ssval and bsval are initialized based
on the values of the parameters ss and bs. The counters ct,
bsctr, ssctr, id2, id3, and id4 are set based on the scan
or increment number. The constants and counters are set
automatically and their values should only be changed with
caution.

It is not possible to declare a new v- variable. However, it is
possible to reassign the integer index of a v- variable to a
new name. For example, the assignment int
myvariable=v1; assigns the index value of v1 to the new
name myvariable. After this assignment, both myvariable
and v1 can be used to access the values of the v1 v- variable.
A compiler definition can also be used to provide an alias
for a v- variable. For example, use the statement #define
myvariable v1. This statement is placed outside the
pulse- sequence function and does not end with a semicolon.

Table 17 Real-time variables and constants

v1 to v42 Real-time v-variables point to 32-bit integer values that are used for real-time
calculations, indexes of loops, and phase multipliers.

ct The completed-transient counter points to a 32-bit integer that is incremented after
each transient, starting with a value of 0 prior to the first experiment. This pattern
(0,1,2,3,4,etc) is the basis for many scan-to-scan calculations.

84 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Calculating with real-time integer math

The statements for integer mathematics as listed in Table 18
are used to manipulate real- time v- variables. These are: add,
dbl, decr, divn, hlv, incr, mod2, mod4, modn, mult and sub.

The result of an integer division is truncated. For the
statement hlv(vi,vj), if vi=3 then vj=1.

The mod# statements yield the remainder of a division. For

bsval, bsctr A blocksize counter bsctr points to a 32-bit integer that is decremented from bsval to
1 during each block of transients. After completing the last transient in the block,
bsctr is set back to a value of bs and the block of data is transferred from the
acquisition computer to the workstation.

oph A phase multiplier oph controls the phase of the receiver in 90 increments (0=0 ,
1=90 , 2=180 , and 3=270). If cp='y', oph is set to the successive modulo values
0,1,2,3. If cp='n', oph is set to zero. The pattern of successive values of oph can be
obtained from a table through use of the setreceiver statement.

zero, one, two, three Real-time constants with values of 0,1,2,3 that are often used to select the constant
phases of 0 , 90 , 180 , and 270

ssval, ssctr, ssct A steady-state counter ssctr is decremented from ssval to 1 during the steady-state
period before the first scan ct=1. The counter ssct is incremented from 1 to ssval
during the steady state period.

id2,id3,id4 Real-time counters of the first, second, and third indirect dimensions of
multidimensional experiments. The value for each index is 0 for the first increment up
to the dimension minus 1 for the last increment.

Table 17 Real-time variables and constants (continued)

Table 18 Statements for real-time integer math

add(vi,vj,vk) Add integer values, set vk = vi + vj.

dbl(vi,vj) Double integer values, set vj = 2*vi.

decr(vi) Decrement an integer value, set vj = vj - 1.

divn(vi,vj,vk) Perform integer division, set vj= vi div vj.

hlv(vi,vj) Perform integer division by 2, set vk = vi div 2.

incr(vi) Increment an integer value, set vk = vi + 1.

mod2(vi,vj) Find and integer value modulo 2, set vk = vi % 2.

mod4(vi,vj) Find and integer value modulo 4, set vk = vi % 2.

modn(vi,vj) Find and integer value modulo n, set vk = vi % n.

mult(vi,vj,vk) Multiply integer values, set vk equal to vi * vj.

sub(vi,vj,vk) Subtract Integer values, set vk equal to vi - vj.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 85

the statement modn(vi,vj,vk), if vi=5 and vj=2 then vk=1.
Negative integers are not allowed in the mod# statements.

It is always a good practice to document the result of a
real- time statement, because its results are hard to visualize.
The following example illustrates the action of several
integer math statements and how comments are typically
used:

The same variable can be used as the input and output of a
particular statement; for example, dbl(v1,v1)reassigns v1.

The parameter value ss is associated with real- time
variables ssval, ssctr, and ssct. The value of ssval is set
to the absolute value of ss. The value of ssctr is initialized
to ssval and decremented on each steady- state scan until it
reaches 0. When ssctr is 0, all subsequent transients are
collected as data. The value of ssct is incremented from 1
to ssval during the steady state period. The steady state
period occurs once before the first increment. If ss is
greater than 0, the steady- state period is performed once at
the beginning of any experiment. If ss is less than 0, the
steady- state period is repeated before each increment of an
arrayed or multidimensional experiment.

The parameter value bs is associated with real- time
variables bsval and bsctr. The value of bsval is set to the
value of bs. The value of bsctr is initialized to bsval and
decremented until it reaches 1. When bsctr reaches 1, data
is sent from the acquisition computer to the workstation and
bsctr is reset to bsval.

The two statements in Table 19 initialize a real- time variable
with a value. The assign statement uses the value of
another real- time variable. The initval statements truncates
a double value to an integer and sets that value.

For a specific v-variable, the nitval statement should be
used only once per increment. The initval occurs at
run- time, and only the last initval for a given v-variable is
ultimately used. For example,

initval(1.0,v1);

pulse(pw,v1);

initval(2.0,v1);

hlv(ct,v1); /* v1=0011223344... */

dbl(v1,v1); /* v1=0022446688... */

mod4(v1,v1); /* v1=0022002200... */

86 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

pulse(pw,v1);

will give two pulses, each with a phase of 2.

The v-variables can also be initialized with the assign
statement. This assign statement is a real- time initialization,
and can be used multiple times. For example,

assign(one,v1);

pulse(pw,v1);

assign(two,v1);

pulse(pw,v1);

Will give two pulses, the first with phase 1 and the second
with phase 2. A v-variable can be reset to zero using
assign(zero,vi) or by subtracting it from itself
sub(vi,vi,vi).

Table 19 Statements to initialize real-time variables

assign(vi,vj) Initialize a real-time value of vj with the value
of vi.

initval(varname,vi) Initialize a real-time value vi with rounded
value of double varname.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 87

Real-time loops and conditionals

The statements for real- time loops and conditionals are
described in Table 20.

A real- time loop consists of a set of statements placed
between the statement loop(count,index) and the
statement endloop(index). The argument count is the loop
count and index is incremented from 1 to the value of
count. Both arguments must be real- time integers. All of the
statements in between loop and endloop must be real- time
math statements or statements that generate acodes. The
argument index can be used in real- time math statements.

The following example executes a delay that cycles among
four multiples of d3, scan- to–scan.

The rlloop and rlendloop are a variation on loop and
endloop. Instead of using an initval statement to initialize
the loop count for the loop element, it is passed as the first
argument to rlloop. The following two examples yield the
same results.

initval(7.0,v1)

loop(v1,v10);

delay(d3);

endloop(v10);

Table 20 Statements for real-time loops and conditionals

elsenz(testzero) Execute code if testzero is not equal to 0.

endhardloop(count) End a hardware loop begun with
starthardloop - obsolete.

endif(testzero) End any real-time conditional.

endloop(index) End a loop begun with loop.

ifzero(testzero) Execute code if testzero is equal to 0.

loop(count,index) Begin a loop of count cycles with index.

starthardloop(count) Begin a hardware loop of count cycles.

mod4(ct,v5); /* v5 is the loop counter: v5=01230123...*/

loop(v5,v3); /* v3 is the index for the loop */

delay(d3); /* executes delay(d3); V5 times */

endloop(v3);

88 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

rlloop(7.0,v1,v10);

delay(d3);

rlendloop(v10);

The advantange of the rlloop pair is that the total time of
the loop can be calculated at run- time and the rlloop
rlendloop pair can therefore be used in parallel sections of
a pulse sequence. The loop endloop pair cannot be used in
parallel sections of a pulse sequence.

A third real- time loop is the kzloop kzendloop pair. In this
case, instead of being passed a loop count, kzloop is passed
a loop duration. The kzendloop then determines the total
time of all the elements between the kzloop and kzendloop
statements. From that, it calculates the loop count. Any
leftover time is added as a delay as part of the kzendloop
statement. This kzloop kzendloop pair is also allowed in
parallel sections of a pulse sequence.

The statements starhardloop and endhardloop function as
loop and endloop. The argument count is the loop count
but index is not available. These statements should be
replaced with loop and endloop or rlloop and rlendloop
for VNMRS.

Statements within the pulse sequence can be executed
conditionally by enclosing them within the statements
ifzero(testzero), elsenz(testzero) and
endif(testzero) statements, in which testzero is a
real- time variable to be tested for a value of zero. The first
block is executed if the value of testzero is 0. The block
after elsenz is executed if the value is nonzero. The elsenz
statement may be omitted. The endif statement ends the
second block. The first block might contain no statements.

The following example of a real- time conditional
construction executes a pulse and delay of different lengths
on alternate scans.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 89

It is important to remember that the statements of a
real- time loop or conditional are executed differently at
run- time and during real- time. At run- time, every statement
is executed once and only once. The loop count and the
conditional test have no effect at run- time. Real- time loops
and conditionals have an effect only in real- time and only
on the resolved acodes. All C calculations associated with
the statements is complete before the start of acquisition. It
is a bad practice to place C calculations in a real- time loop
or conditional. This practice can create a misleading
impression that the C code is actually looped or executed
conditionally.

Additional statements for several other real- time
conditionals are shown in Table 21.

For the statement ifrtEQ(vi,vj,testzero), the argument
testzero is a real- time variable that is set to zero if the
real- time value of vi is equal to the value of vj and the
block of code before elsenz(testzero)or
endif(testzero)is executed.

The other statements ifrtGE, ifrtGT, ifrtLE, ifrtLT, and
ifrtNEQ have the same behavior for their respective
conditionals, greater than equal, greater than, less than or

mod2(ct,v1);/* v1=010101...*/

ifzero(v1);/* test for a v1 value of 0 (odd scans)*/

pulse(pw,v2);/* execute a pulse pw on odd scans*/

delay(d3);/* execute a delay of d3 on odd scans*/

elsenz(v1); /* test for a v1 value of not 0 (even scans*/

pulse(2.0*pw,v2);/* execute a pulse pw/2.0 on even scans*/

delay(d3/2.0);/* execute a delay of d3/2.0 on even scans*/

endif(v1)

Table 21 Statements for additional real-time conditionals

ifrtEQ(vi,vj,testzero) Execute code if the value of vi equals vj.

ifrtGE(vi,vj,testzero) Execute code if the value of vi is greater than or equal to vj.

ifrtGT(vi,vj,testzero) Execute code if the value of vi is greater than vj.

ifrtLE(vi,vj,testzero) Execute code if the value of vi is less than or equal to vj.

ifrtLT(vi,vj,testzero) Execute code if the value of vi is less than or equal to vj.

ifrtNEQ(vi,vj,testzero) Execute code if the value of vi is not equal to vj.

90 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

equal, less than, and not equal.

Real-time integer tables

The real- time integer tables named t1 to t60 each store
arrays of 32- bit integers on the acquisition computer. An
integer table name can be used in any statement to control a
phase, power, or amplitude in which a real- time integer, v1
to v42 might be used. Integer tables are used most often to
create phase tables. For example, the statement
rgpulse(pw,t1,rof1,rof2)performs an obs transmitter
pulse whose quadrature phase is specified by the table t1.
Alternatively, rgpulse(pw,v1,rof1,rof2)performs the same
pulse with the value v1.

Integer table names cannot be used in the real- time math
statements listed in Table 16 on page 82.

A table name is initialized just once with the first increment
of a multidimensional or arrayed pulse sequence. The
settable and loadtable statements are ignored in
subsequent increments. The initialized table values are
available at the beginning of each increment.

By default, the index to a table is initialized to zero and
incremented by one, at the end of each scan. The table
element with index of 0 is used for all scans during a
steady- state period.

Table 22 shows the statements for handling tables.

Table 22 Statements for handling tables

getelem(tablename,APindex,Apdest) Retrieve an element from a table.

loadtable(file) Load table elements from a table, text file.

setreceiver(tablename) Associate receiver phase with a table.

settable* Initialize a table with an integer array.

tsadd(tablename,scalarval,moduloval) Add an integer to table elements.

tsdiv(tablename,scalarval,moduloval) Apply an integer division to table elements.

tsmult(tablename,scalarval,moduloval) Multiply an integer by table elements.

tssub(tablename,scalarval,moduloval) Subtract an integer from table elements.

ttadd* Add two tables.

ttdiv* Apply an integer division to two tables.

ttmult* Multiply two tables.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 91

The loadtable(file)statement loads table elements from a
table text file. The argument file specifies the name of a
Linux text file in the user's personal tablib directory or in
the VnmrJ system tablib directory. The statement
loadtable can be used multiple times within a pulse
sequence with different file names. However, you must
ensure that a table name is not called more than once.

The settable(tablename,numelements,intarray)
statement stores an array of integers in a real- time table.
The argument tablename specifies the name of the table (t1
to t60). The argument numelements specifies the size of the
table. The argument intarray is a C array that contains the
values of the table elements. The dimension of intarray
should be greater than numelements. Like the initval
statement, the settable is a run- time element. For a
specific table variable, the settable statement should be
used only once per increment. In contrast to initval, the
first settable for a give table variable is used, unless the
table size changes. For good programming practice, only use
a single settable call for a given table variable.

The getelem(tablename,APindex,APdest) statement
retrieves an element from a table. The argument tablename
specifies the name of the Table (t1 to t60). APindex is a
variable (v1 to v42, oph, ct, bsctr, ssct, or ssctr) that
contains the index of the required table element. Note that
the first element of a table has an index of 0. APdest is a
real- time variable (v1 to v42 and oph) into which the
retrieved table element is placed. Use getelem to customize
the order of retrieval of table elements or to set a phase
cycle during a steady- state period.

The setreceiver(tablename) statement assigns the ctth
element of the table tablename to the receiver variable oph.
If multiple setreceiver statements are used in a pulse
sequence, or if the value of oph is changed by real- time

ttsub* Subtract two tables.

*settable(tablename,numelements,intarray)

*ttadd(tablenamedest,tablenamemod,moduloval)

*ttdiv(tablenamedest,tablenamemod,moduloval)

*ttmult(tablenamedest,tablenamemod,moduloval)

*ttsub(tablenamedest,tablenamemod,moduloval)

Table 22 Statements for handling tables (continued)

92 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

math statements such as assign, add, etc, then the last
value of oph prior to the acquisition of data determines the
value of the receiver phase.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 93

To perform scalar operations of an integer with table
elements, use the following statements:

tsadd(tablename,scalarval,moduloval)

tssub(tablename,scalarval,moduloval)

tsmult(tablename,scalarval,moduloval)

tsdiv(tablename,scalarval,moduloval)

in which tablename specifies the name of the table (t1 to
t60) and scalarval is a C- integer added to, subtracted
from, multiplied with, or divided into each element of the
table. The result of the operation is taken modulo moduloval
if moduloval is greater than 0. For the tsdiv statement, a
scalarval of 0 causes a run- time error.

To perform run- time vector operations of one table with a
second table, use the following table- to- table statements:

ttadd(tablenamedest,tablenamemod,moduloval)

ttsub(tablenamedest,tablenamemod,moduloval)

ttmult(tablenamedest,tablenamemod,moduloval)

ttdiv(tablenamedest,tablenamemod,moduloval)

in which tablenamedest and tablenamemod are the names
of tables (t1 to t60). Each element in tablenamedest is
modified by the corresponding element in tablenamemod.
The result, stored in tablenamedest, is taken modulo
moduloval if moduloval is greater than 0. The number of
elements in tablenamedest must be greater than or equal to
the number of elemtns in tablenamemod.

The format of a table file

Each table definition must start with the table name t1 to
t60 and be followed by an enumeration of the table
elements. Each table element must be written as an integer
number and separated from the next by some form of white
space, such as a blank space, tab, or carriage return. The
table name is separated from the elements by an '=' sign. A
table definition can occur only once in a table file.

A table that is defined as below starts with an index of 0
and increments by one, once per scan.

Special notation within the table modifies access to the table
and it can simplify entering the table elements.

94 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Nesting of (...) and [...] expressions is not allowed.
Multiple {...} expressions within one table are not allowed.

The overhead operations preceding every transient are
resetting the DTM (data- to- memory) control information. The
overhead operations following every transient are error
detection for the number of points and data overflow;
detection for blocksize, end of scan, and stop acquisition,
and resetting the decoupler status. d0 does not take these
delays into account.

The overhead operations preceding every array element are
initializing the rf channel settings (frequency, power, etc.),
initializing the high- speed (HS) lines, initializing the DTM, and
if arrayed, setting the receiver gain. d0 does not take into
account arraying of decoupler status shims, VT, or spinning
speed.

Table 23 Formatting tables

(...)# Indicates that the sequence of table elements within the
parentheses are to be replicated in their entirety # times (#
ranges from 1 to 64) before proceeding to any succeeding
elements. For example: t1=(0 1 2)3 /* t1
table=012012012 */.

[...]# Indicates that each element within square brackets is to be
replicated # times (# ranges from 1 to 64) before going to the next
element. For example: t1=[0 1 2]3 /* t1
table=000111222 */.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 95

Shaped Pulses and Waveforms

This section contains information on programming of shaped
pulses and waveforms in VnmrJ.

Executing shaped pulses

A shaped pulse is an RF pulse that is executed with a
program of variable phase, amplitude and frequency offset in
order to control the bandwidth of excitation. Execution of a
shaped pulse requires the acquisition computer output time
functions of phase and amplitude with maximum speed and
minimum time resolution. Time functions of frequency offset
are convoluted with the phase program, noting that a
frequency- offset pulse can be produced with a linear
time- ramp of phase.

Any pulse shape can be represented as a table of steps of
duration, phase, amplitude and gate, a pattern. The gate is
used to provide a true zero amplitude, should that be needed
for the shape. VnmrJ represents the pattern as a .RF text
file in the directory shapelib of the user, of an applications
directory or of the system. Two related entities, waveforms
and gradient shapes, have different file extensions, .DEC and
.GRD, respectively, and are also stored in shapelib.

The acquisition computer has special software to optimize
the output- speed of shaped pulses and waveforms. This
software is accessed by including a shaped- pulse statement
in the pulse sequence. If a shape is used, information from
the appropriate .RF file is downloaded to the acquisition
computer at run- time. The information in acquisition
computer memory is accessed in real- time by the acodes
associated with the shaped- pulse statement. Use of a
shaped- pulse statement and a .RF file removes the need to
program a standard loop of pulse- sequence statements. The
shape usually also has better execution performance than a
loop.

96 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Statements to perform shaped pulses are listed in Table 24.

*decshaped_pulse(shape,width,phase,RG1,RG2)

*dec2shaped_pulse(shape,width,phase,RG1,RG2)

*dec3shaped_pulse(shape,width,phase,RG1,RG2)

*simshaped_pulse
(obsshape,decshape,obswidth,decwidth,RG1,RG2)

*sim3shaped_pulse
(obsshape,decshape,dec2shape,obswidth,decwidth,dec2width,
RG1,RG2)

*sim4shaped_pulse
(obsshape,decshape,dec2shape,dwc3shape,obswidth,decwidth,
dec2width,dec3width,RG1,RG2)

The statement shaped_pulse(shape,width,phase,RG1,RG2)
executes a shaped pulse on the obs transmitter, in which
shape is the pattern name and the root name of the .RF file
in shapelib. The argument width is the duration of the
pulse, phase is a real- time variable or a phase table to set
the initial quadrature phase, and RG1 and RG2 are a
pre- delay and post- delay similar to those of the rgpulse
statement. For example,
shaped_pulse("gauss",pw,v1,rof1,rof2)) uses the
gauss.RF file in the system shapelib to execute a
pre- calculated standard Gaussian pulse.

The power of the shaped pulse is controlled by the existing
attenuator setting and the maximum amplitude (1024) of the
shaped pulse is scaled to the amplitude of the current fine
power setting. The duration steps of the shaped pulse are
scaled to fit the width argument. If the pattern name is '',
the output will be a rectangular pulse.

The statements decshaped_pulse, dec2shaped_pulse,
dec3shaped_pulse and dec4shaped_pulse have the same

Table 24 Statements to create shaped pulses

decshaped_pulse* Perform a shaped pulse on the dec channel.

dec2shaped_pulse* Perform a shaped pulse on the dec2 channel.

dec3shaped_pulse* Perform a shaped pulse on the dec3 channel.

shaped_pulse* Perform a shaped pulse on the obs channel.

simshaped_pulse* Perform two simultaneous pulses on obs and
dec.

sim3shaped_pulse* Perform three simultaneous pulses on obs, dec,
and dec2.

sim4shaped_pulse* Perform four simultaneous pulses on obs, dec,
dec2, and dec3.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 97

behavior with the respective dec, dec2, dec3, and dec4
channels.

The statement simshaped_pulse
(obsshape,decshape,obswidth,decwidth,obsphase,
decphase,RG1,RG2) performs a simultaneous, two- pulse,
shaped pulse on the obs and dec transmitters. The argument
obsshape is the pattern name of shape executed on obs and
decshape is the pattern name of the shape executed on dec.
The arguments obswidth and decwidth are the respective
pulse widths, obsphase and decphase are the respective
quadrature phase variables or tables and RG1 and RG2 are
defined for the simpulse statement. The two pulses are
centered, as for simpulse. An example is:
simshaped_pulse("gauss","hrm180",pw,p1,v2,v5,rof1,ro
f2).

If either obswidth or decwidth is 0.0, no pulse occurs on
the corresponding channel. In this case the
simshaped_pulse will not interfere with decoupling on that
channel, if it is occurring. If either pattern name is '', the
output will be a rectangular pulse.

The statement sim3shaped_pulse performs a simultaneous,
three- pulse shaped pulse on the obs, dec and dec2
transmitters. This statement is also used to provide a
two- pulse shaped pulse on any two of these transmitters.
Other behavior is similar to simpulse.

The statement sim4shaped_pulse performs a simultaneous,
four- pulse, shaped pulse on the obs, dec, dec2 and dec3
transmitters. This statement is also used to provide two and
three- pulse shaped pulse on any of these transmitters. Other
behavior is similar to simpulse.

The statement
shapedpulseoffset("gauss",width,phase,RG1,RG2,offset)
performs a shaped_pulse with a frequency offset,
determined by the argument offset (Hz). The offset is
obtained by convoluting a linear phase ramp with the RF
pattern obtained from the .RF file. The convolution is
obtained by a combination of operations performed at both
run time and real time. The statement is used to provide a
frequency offset to a standard non- offset .RF pattern and
avoids the need to explicitly program the offset into the
shape.

98 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Calculation of shaped pulses

The .RF file for a shaped pulse (Table 25) has four columns
that describe phase, amplitude, relative durations and the
transmitter gate.

Each line is a step in the shape. The first column sets the
phase in degrees with four significant figures after the
decimal to accommodate the DD2 MR 0.0055° (360.0°/65536)
phase resolution. The second column is the relative
amplitude with values of 0.0 to 1023.0 and at least 3
significant figures after the decimal for older systems that
have 16- bit (1023.0/65536) amplitude resolution. The
maximum amplitude of the shape is scaled at run- time to
the current value of the fine attenuator 0.0 to 4095.0. The
scaling preserves the 16- bit amplitude resolution. The third
column is a relative duration for each step. The duration
values are translated into time intervals at run time based
upon the argument width. Time intervals are rounded to
0.025 µs (for DD2 MR) or 0.05 µs (for VNMRS) resolution.
The fourth column is an optional gate. If the gate column is
absent, the value is assumed to be 1.0 for transmitter on. If
a shaped pulse has period in which the transmitter is off,
then one must supply gate values for each step, in which 1.0
is for transmitter- on and 0.0 is for transmitter- off.

A row with a duration of 0.0 and an amplitude of 1023.0
can be used to make sure that the amplitude is scaled to the
maximum step of 1023.0 rather than the maximum step of
the pattern. One can also use a value greater than 1023.0
(for example 4095.0) to increase the range of amplitude
values. This practice is common in imaging sequences.

Pre- calculated pattern files for pulse shapes can be supplied
by any appropriate macro, external program, or by simply
typing with a text editor. It is the user's responsibility to
know the equation for shaped pulse and calculate the steps.

Table 25 RF patterns

Column Description Limits Default

1 Phase angle (degrees) 0.0044° resolution Required

1 Phase angle (degrees) 0.0055° resolution Required

2 Amplitude 0.0 to scalable max max

3 Relative duration 0.0, or 1.0 to 255.0 1.0

4 Transmitter gate 0.0 or 1.0 1.0 (gate on)

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 99

VnmrJ supplies an external C program called Pbox whose
purpose is to calculate a large variety of the shapes used for
spectroscopic applications. The information that Pbox uses
for calculation of shapes is contained in the wavelib
directory of the system. Pbox has its own programming
language that is described in the Spectroscopy User Guide.

Programmed waveforms for decoupling

A waveform is an RF pattern of phase amplitude, frequency,
and offset that is repeated in a loop, usually to provide
decoupling or a spinlock. Execution of a waveform requires
that the acquisition computer output time functions of phase
and amplitude with maximum speed and minimum time
resolution and sustain that output for long periods of time.
Time functions of frequency offset are convoluted with the
phase function, noting that a frequency- offset can be
produced with a linear time ramp of phase.

Statements related to programmable waveform control are
listed in Table 26.

The statement
obsprgon(name,90_pulselength,tipangle_resoln) is used
to start the waveform control of the obs transmitter. The
argument name is the pattern name and the root name of the
.DEC file in shapelib. The argument 90_pulselength is a
time duration for a step of 90 units of relative duration in

Table 26 Statements for waveform control

decprgoff()* End waveform decoupling on the dec channel.

dec2prgoff()* End waveform decoupling on the dec2 channel.

dec3prgoff()* End waveform decoupling on the dec3 channel.

decprgon()* Begin waveform decoupling on the dec channel.

dec2prgon()* Begin waveform decoupling on the dec2 channel.

dec3prgon()* Begin waveform decoupling on the dec3 channel.

obsprgoff()* End waveform decoupling on the obs channel.

obsprgon()* Begin programmable decoupling on the obs channel.

*decprgon(pattern_name,90_pulselength,tipangle_resoln)

*dec2prgon(pattern_name,90_pulselength,tipangle_resoln)

*dec3prgon(pattern_name,90_pulselength,tipangle_resoln)

*obsprgon(pattern_name,90_pulselength,tipangle_resoln)

100 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

the .DEC file. The argument tipangle_resoln is the number
of relative duration units associated with the minimum
duration applied in the output of the pattern.

For simple waveforms, for example WALTZ16 decoupling, the
relative duration units correspond to degrees of tip- angle for
calibrated pulses. A statement for WALTZ16 is
obsprgon("waltz16",pw90,90.0), which uses the pattern
file waltz16.DEC. The pulses of WALTZ16 have tip angles of
90° and 180° and the respective, relative durations in the
.DEC file are labeled 90.0 and 180.0. Argument 3 indicates
that a step labeled 90.0 corresponds to one step in the RF
pattern and argument 2 indicates that that step of 90 units
has a pulse width of pw90 µs.

Many waveforms have no obvious connection with tip angle
and it is advantageous to set the minimum step to be the
smallest duration that can be produced by the acquisition
computer, usually 50 ns or 100 ns. To avoid complicated
reasoning, it is best to designate the minimum step to have
a label of 90.0 in the .DEC file. In this case, argument 3 is
always 90.0 and argument 2 is the length of the minimum
step, 50.0e-9 or 100.0e-9. When using this format, pulse
lengths are designated as an integer number, N units of the
minimum step, and they are labeled in the .DEC file with the
number equal to Nx90.0.

The obsprgon statement returns an int with the number of
50- ns ticks in one full pattern.

The statement obsprgoff is used to terminate a period of
programmed decoupling on the obs transmitter. A
programmed decoupling period can be terminated at any
time. The pattern will halt in mid- cycle with no ill effects if
the delay is not a multiple of the pattern time. This
capability is of significant advantage when you need to
decouple during an arbitrary period, say F1 of a
2- dimensional sequence, which does not require to
synchronize the decoupler cycle with the F1 dwell. With a
loop construction, you could only stop at multiples of the
decoupler cycle.

The statements decprgon, decprgoff, dec2prgon,
dec2prgoff, dec3prgon, dec3prgoff, dec4prgon, and
dec4prgoff provide similar waveform capability with the
dec, dec2, dec3, and dec4 channels.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 101

Waveforms with an automatic frequency offset

The statements in Table 27 begin a programmed waveform
with an automatic frequency offset.

The statement obsprgonOffset begins a waveform with an
automatic frequency offset, for which frequency is a double
that supplies the offset frequency in Hertz. Use obsprgoff
to end the period of a programmed waveform. The first
three arguments are similar to those of obsprgon.

The frequency offset is created by applying a linear phase
ramp to the elements of the named pattern. The initial phase
of the pattern is similar to that applied by obsprgon. The
phase remains coherent throughout the repeated cycles of
the entire pattern. The ending phase of each cycle is applied
to the beginning of the next cycle. With obsprgoff, the
phase reverts to the state before the obsprgonOffset was
applied. You must explicitly program the starting phase of
the next block of the sequence if there is a requirement that
it be phase- coherent with the waveform.

Individual periods of duration in the named pattern are
expanded into many elements each with a 50.0 ns duration
and a linear increment or decrement of the phase. The
expansion is carried out partially at run- time and the
waveform stored in the acquisition computer will be
substantially larger than the original named pattern. The rest
of the expansion is carried out in real time by the
RFcontroller.

A waveform created for use with obsprgonOffset will be
stored in the acquisition computer with a size approximately
10- fold smaller than an equivalent offset waveform that

Table 27 Statements for waveform control with an offset

decprgonOffset()* Begin offset waveform decoupling on the dec channel.

dec2prgonOffset()* Begin offset waveform decoupling on the dec2 channel.

dec3prgonOffset()* Begin offset waveform decoupling on the dec3 channel.

obsprgonOffset()* Begin offset waveform decoupling on the obs channe.l

*decprgonOffset(pattern_name,90_pulselength,tipangle_resoln,frequency)

*dec2prgonOffset(pattern_name,90_pulselength,tipangle_resoln,frequency)

*dec3prgonOffset(pattern_name,90_pulselength,tipangle_resoln,frequency)

*obsprgonOffset(pattern_name,90_pulselength,tipangle_resoln,frequency)

102 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

might be created for obsprgon. The last 10- fold expansion is
carried out in real- time. The use of obsprgonOffset rather
than obsprgon will decrease the startup time, because a
smaller waveform is loaded, and it will allow a greater
number of waveforms to be stored, in cases, for example,
where the offset is arrayed.

The named patterns that are run with obsprgonOffset
should be run with a minimum element size of 25 ns for
DD2 MR systems and 50 ns for older systems. This means
that 90_pulselength>=250.0e-9*90.0/tipangle_resoln.
For example, the WALTZ sequence described above would
have a minimum 90° pulse length of 25 ns for DD2 MR
systems and 50 ns for older systems. You should be cautious
in using waveforms for which 90_pulselength is already a
minimum step- size. The pattern files for such a waveform
must be calculated for a minimum step- size greater than or
equal to 25 ns for DD2 MR systems and 50 ns for older
systems. .

User- libraries for the calculation of shaped pulses (such as
Pbox) have the capability to apply frequency- offset
waveforms, in which the entire offset pattern is represented
in the .DEC pattern file. These patterns should be used with
obsprgon and generally they will fail with obsprgonOffset,
unless they have been purposefully calculated with a coarse
stepsize.

The statements deprgonOffset, dec2prgonOffset, and
dec3prgonOffset have a similar function on their respective
channels.

Using spinlock pulses

A spinlock pulse is a shaped pulse constructed from N
cycles of programmed decoupling. Statements for creation of
spinlocks are listed in Table 28.

*(pattern, 90_pulselength,tipangle_resoln,phase,ncycles)

The statement
spinlock(name,90_pulselength,tipangle_resoln,phase,n

Table 28 Statements for spinlock control

decspinlock()* Perform a spinlock on the dec channel.

dec2spinlock()* Perform a spinlock on the dec2 channel.

dec3spinlock()* Perform a spinlock on the dec3 channel.

spinlock()* Perform a spinlock on the obs channel.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 103

cycles) performs a spinlock pulse in which pattern_name
is the name of the pattern and the root name of the .DEC
file in shapelib. The arguments 90_pulselength and
tipangle_resoln have meaning similar to that for the
statement obsprgon. The argument phase is a quadrature
phase table or real- time variable and ncycles is the number
of cycles of the pattern applied during the spinlock pulse.
The spinlock has no predealy or postdelay. The spinlock
sets the phase and applies transmitter unblanking coincident
with the start of the pulse. An example is
spinlock('mlev16',pw90,90.0,v1,ncyc50) which applies a
pulse of ncyc50 cycles of MLEV16, using the pattern file
mlev16.DEC.

The statements decspinlock, dec2spinlock, dec3spnlock,
and dec4spinlock provide similar spinlock capability with
the dec, dec2, dec3, and dec4 channels.

Calculation of programmed waveforms

The .DEC file for programmed decoupling (Table 29) has
four columns: relative duration, phase, amplitude, and the
transmitter gate.

Each line is a step in the programmed decoupling pattern.

The first column sets the relative duration in "tip- angle"
units. For patterns made of 90° and 180° pulses, this value
should be the desired tip angle of the calibrated pulse. The
time period corresponding to a tip angle of 90.0 is set by
the obsprgon statement. For an arbitrary waveform, where
there may be no reference to tip angle, the duration step
should be the value Nx90.0 in which N is the number of
minimum step- sizes in the required pulse width. In this
second format, obsprgon sets the minimum step size and the
third argument should be 90.0.

The second column sets the phase in degrees with four
significant figures after the decimal to accommodate the

Table 29 Elements of a waveform pattern

Column Description Limits Default

1 Tip angle (degrees) 0.0 to max (unlimited) Required

2 Phase (degrees) 0.0 to 360.0 (preferred) Required

3 Amplitude 0.0 to 1023.0 1023.0

4 Transmitter gate 0.0 or 1.0 1.0 (gate on)

104 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

0.0055o (360.0/65536) phase resolution of VnmrJ. The actual
phase is determined by the resolution of the hardware.

The third column is the relative amplitude with values of 0.0
to 1023.0. Three significant figures after the decimal are
required to preserve the 16- bit resolution of VnmrJ. The
actual amplitude is determined by the resolutuion of the
hardware. The maximum amplitude of the shape is scaled at
run- time to the current value of the fine attenuator 0.0 to
4095.0, preserving 16 bit resolution. If the third column is
absent, the amplitude is set to 1023.0.

The fourth column is an optional gate. If the gate column is
absent, the value is assumed to be 1.0 for transmitter- on. If
a shaped pulse has a period in which the transmitter is off,
then you must supply gate values for each step in which 1.0
is for transmitter- on and 0.0 is for transmitter- off.

The listing below shows the first 8 steps of a standard
pattern, waltz16.DEC. The amplitude and gate columns are
omitted

A row with a duration of 0.0 and an amplitude of 1023.0
can be used to ensure that the fine power is scaled to the
maximum step of 1023.0 rather than the maximum step of
the pattern.

Precalculated pattern files for pulse shapes can be supplied
by any appropriate macro, external program or by simply
typing with a text editor. It is the users responsibility to
know the equation for their shaped pulse and calculate the
steps. Many waveform patterns can be obtained from Pbox.

Calculating gradient shapes

A gradient file has two columns, as shown in Table 30. The
first column is a gradient DAC level that should have the
range –32767 to 32767 in units of 1. The second column is a

270.0 180.0

360.0 0.0

180.0 180.0

270.0 0.0

 90.0 180.0

180.0 0.0

360.0 180.0

180.0 0.0

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 105

relative duration similar to that of the .RF file.

Statements that create shape, waveform and gradient files

Shape, waveform, and gradient text files can be created in
shapelib with their respective statements, init_rfpattern,
init_decpattern, and init grad_pattern (Table 31).

The statement
init_rfpattern(pattern,rfpat_struct,nteps) creates a
text file in shapelib with a root name of pattern with a
.RF extension. The information for this file is obtained from
a C structure variable rfpat_struct and nsteps is the
number of elements in the file. To use init_rfpattern,
declare a structure variable of RFpattern type with more
than nsteps elements, for example:

RFpattern myshape(512);

in which the pattern mypattern has 64 elements. Set values
in the pulse sequence for myshape.phase[n],
myphase.amp[n], and myphase.time[n] for each element n=
0 to 63 in the pattern file. The statement:

init_RFpattern('mypattern',myshape,64);

creates a text file in shapelib called mypattern.RF.

For init_decpattern(pattern,decpat_struct,nsteps), the
structure type is DECpattern and for a variable name
mywave, they are mywave.tip, mywave.amp, mywave.phase,
and mywave.gate.

Table 30 Elements of a gradient pattern

Column Description Limits Default

1 Output amplitude -32767 to 32767, 1 unit resolution Required

2 Relative duration 1 to 255 1

Table 31 Statements to create pattern files

init_rfpattern(pattern,rfpat_struct,nsteps) Create shaped-pulse pattern file.

init_decapttern(pattern,decpat_struct,nsteps) Create waveform pattern file.

init_gradpattern(pattern,grdpat_struct,nsteps) Create gradient pattern file

userRFshape(pattern,rfpat_struct,nsteps,channel) Create shaped-pulse pattern directly

userDECshape(pattern,rfpat_struct,tipangle_reson,mode,
nsteps,channel)

Create waveform pattern directly

106 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

For init_gradpattern((pattern,rfpat_struct,nteps), the
structure type is DECpattern and for a variable name
mygrad, they are mygrad.amp, mygrad.time, and mygrad.ctrl.

The statement userRFshape creates a pattern for a shaped
pulse directly in the acqusition computer and avoids the
need to write a file into shapelib. The arguments are the
same as init_RFpattern except that you must declare a
fourth argument channel as OBSch, DECch, DEC2ch, DEC3ch,
or DEC4ch. Direct creation of a pattern saves time at
run- time.

The statement userDECshape creates a pattern for a
waveform directly in the acqusition computer and avoids the
need to write a file into shapelib. The arguments are the
same as init_DECpattern except that you must declare a
fourth argument channel as OBSch, DECch, DEC2ch, DEC4ch,
or DEC4ch. The argument tipangle_resoln should be the
same as the third argument of obsprgon.

Waveform interpolation

Automatic waveform interpolation

For MR systems with RF controllers, waveform execution is
automatically enhanced by use of an interpolation processor,
located on the RF controller between the main processor and
the FIFO output. Interpolation is used to automatically
execute any waveform duration designated to contain more
than one duration step. For example, if the resolution
(tipangle_resoln, argument 3 of obsprgon) is 90.0, a
waveform element that is designated with a duration of
180.0 is executed by the interpolator as two steps of 90.0.
Use of the interpolator saves time for the main processor,
which only has to get one pattern element from memory,
rather than two. The result is improved efficiency and a
smaller probability for FIFO underflow errors. Interpolation
was added with VnmrJ2.1C.

The interpolator can execute up to 256 steps using one
pattern element. Waveform elements longer than 256 steps
are automatically divided into multiple pattern elements. The
execution speed of a 256- step element is only slightly larger
than that of a single- step element. The break point for
improved efficiency occurs with pattern elements of greater
than about 3 to 5 steps, and the potential for improved
efficiency is 50 to 100 fold.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 107

Interpolation is beneficial when the duration step size
(90_pulselength, argument 2 of obsprgon) is small (25 ns
to 250 ns) and the typical width of a pulse in the waveform
is large. The interpolator makes it possible to execute many
small steps efficiently. The duration step size is also the
pulse width resolution, so it is advantageous to keep the
step size small. For example, a waveform such as GARP
decoupling has long pulses that must be set with 1°
flip- angle resolution. The pulses of GARP are executed by
the interpolator each as a group of 1° steps. For many
waveforms there is no obvious connection between the flip
angle and the length of pulses. The practice for these
waveforms is to choose a small step size (25 ns to 100 ns)
and express the pulse length in steps. Interpolation makes
this practice possible. See the section "Programmed
Waveforms for Decoupling" for a discussion of obsprgon and
its arguments. Interpolation with the statements decprgon,
dec2prgon, dec3prgon and dec4prgon is similar to that with
obsprgon.

The statement obsprgonOffset uses interpolation to create a
frequency offset. The frequency designated by the offset
argument is executed automatically by the interpolator as a
ramp of small phase steps, executed in blocks. The
interpolator can execute the ramped phase steps of
obsprgonOffset with the same efficiency as the constant
steps of obsprgon. The statements decprgonOffset,
dec2prgonOffset, dec3prgonOffset and dec4prgonOffset
are similar to obsprgonOffset.

Custom waveform interpolation with userDECshape

The userDecshape statement and the DECpattern structure
can be used to generate waveforms with explicit control of
interpolation. This capability is not available for the
userRFshape statement.

The statement userDecshape can generate waveforms for
any of the pulse- sequence channels obs, dec, dec2, etc
depending on the value of its sixth argument channel. These
waveforms are executed by obsprgon, decprogon, etc. The
DECpattern structure, contains a set of fields tip, phase,
amp, and gate to describe the shape, and this structure
provided as an argument to userDecshape to calculate the
waveform. See "Statements that create shapes, waveform and
gradient files" in this chapter, for more information about
userDECshape.

108 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

The DECpattern structure has two additional fields for
interpolation, phase_inc and amp_inc. The value of
phase_inc is an increment to the value of phase that is
applied with each step of the element. The first step is set
as phase and each subsequent step adds phase_inc. Both
phase and phase_inc are expressed in degrees with 16- bit
resolution (one unit is ~ 0.0055°). The value of amp_inc is
an increment to the value of amp that is applied with each
step of the element. The first step is set as amp and each
subsequent step adds amp_inc. Both amp and amp_inc are
expressed in amplitude units (0.0 to 1023.0) with 16- bit
resolution (one unit is ~0.0625). It is possible to ramp phase
and amplitude at the same time.

The number of duration steps to be interpolated is set as
tip/(tip_angle_resoln*90_pulselength, where tip is the
duration field of the DECpattern structure. The
tip_angle_resoln and 90_pulselength are arguments 2
and 3 of obsprgon, decprgon, etc. If the number of steps is
greater than 256, multiple elements are calculated.

The use of userDECshape with control of interpolation is
found with versions of VnmrJ 3 and greater. Sequences that
use userDECshape in earlier versions of VnmrJ will give an
error message in VnmrJ 3, indicating the absence of the
increment values, phase_inc and amp_inc. Interpolation
cannot be used with standard .DEC text, pattern files.
Increment values in columns 5 and 6 of these text files, if
generated, would be ignored.

The interpolation capability of the userDECshape command
was developed to make faster waveforms available for
solid- state NMR experiments and it is also available for
future pulse sequence development. With VnmrJ 3.2 and
later, the standard sequences for solids (see Chapter 13 of
the "Spectroscopy User Guide") can make use of
userDECshape through their access to solids pulse sequence
modules in the #include file /vnmr/psg/solidstandard.h.
Solids interpolation is turned off by default. See the
documentation for the SolidsPack package appropriate to
VnmrJ 3 for more information.

At present (vnmrJ3.2) no other sequences or packages make
use of useDECshape for interpolation.

Considerations for waveform programming with interpolation

A waveform that is constructed with userDECshape and
interpolation can be viewed to be constructed from
trapezoidal elements. The use of trapezoidal elements

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 109

improves waveform fidelity with only a small cost in
efficiency, when it is not possible to further reduce the
duration of elements. Interpolation becomes important for
waveforms where the average duration of elements
approaches 100 to 300 ns, where a controller could possibly
give FIFO underflow errors.

Interpolated steps can also have a variable duration and
therefore accommodate the simulation of pulse lengths with
greater flip- angle resolution or time resolution. One must
still consider two times, a small time and a large time.
With interpolation the argument 90_pulselength of
obsprgon is set to the small time, the smallest step size that
the controller can generate (25 ns or 50 ns). Individual
durations vary with this same resolution. However, one must
still be sure that the average size of an element does not fall
below a large time of about 100 to 300 ns. A conventional
alternative without interpolation would be to set
90_pulselength to the large time, with corresponding loss
of time resolution.

The phase or amplitude slope of a trapezoidal element must
be the result of a constant increment. The interpolator
cannot dither (vary) the phase or amplitude increment
within an element to produce an arbitrary slope. However
one can dither adjacent elements to achieve an average slope
over a longer time. This practice still provides better fidelity
than the use of constant steps.

A typical use of interpolation is to generate a phase- ramped
offset. As noted above, the standard command
obsprgonOffset does this and obsprgon uses interpolation
with constant steps. For the sequence CPM, cosine phase
modulation, used for solid- state NMR, the phase varies
between +/- limits with a cosine function. One can calculate
CPM with interpolation using piecewise linear steps and get
effective performance approaching four elements per cycle. A
chirp or single frequency sweep, SFS, is calculated piecewise
as a parabolic phase ramp. The sequence DFS, double
frequency sweep is a varying sinusoidal amplitude
modulation and is calculated with piecewise amplitude steps.

110 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Programming for Acquisition Control

This section contains information on programming of
acquisition control in VnmrJ.

Implicit acquisition

If a pulse- sequence .c file contains no statements related to
acquisition, VnmrJ will insert a standard acquisition at the
end of the sequence. A large majority of VnmrJ sequences
employ this implicit acquisition. When using implicit
acquisition, the last statement of the sequence should be the
receiver delay, the time after the last pulse, before the
transmit/receive switch and the receiver are turned on.
Usually that statement is delay(rof2); for which rof2 is
the global PSG variable used for the receiver turn- on. The
implicit acquisition then supplies a second acquisition delay
alfa, followed by the acquisition of np points with a
dwell- time of 1/sw. No explicit statements can follow an
implicit acquisition. The implicit acquisition automatically
ends any status period, started before acquisition, and the
sequence returns to the first statement.

For a default, implicit acquisition, the digital receiver adds a
short period of acquisition (about 1.0/sw) following the time
at to fully establish the value of the last point. The
parameter acqtm, if created, will be set with the full
acquisition time. To avoid this additional delay, it is a good
practice create acqtm and set it equal to 'n'. For a usual
acquisition, the last point is noise and does not need to be
determined precisely.

The implicit acquisition also supplies an overhead period of
about 200 s to complete the scan, save the data, and begin
the next scan. This time, along with the additional
acquisition time, is automatically placed in the recycle delay
d1 of the next scan. If d1 is less than the overhead delay, an
error is thrown.

The overhead delay and additional acquisition delay will be
encapsulated in a delay with length d0, if this parameter is
defined. Use the value of d0 to set a minimum recycle time
when d1=0.0.

Standard acquisition with the VNMRS digital receiver

The VNMRS employs a digital receiver to obtain all FID data
for spectral widths up to 5 MHz. The digital receiver

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 111

digitizes a 20 MHz NMR signal, Intermediate Frequency (IF),
using a single 80- MHz Analog- to- Digital Converter, ADC. At
the time of digitization, the center frequency of the spectrum
is 20 MHz. Peaks to higher frequency, to the left of the
spectrum, are just greater than 20 MHz and lower frequency
peaks are just less than 20 MHz. The 20- MHz digitized signal
is then processed with digital filters in order to down- shift
the center frequency to zero. The result is a standard FID,
containing real and imaginary parts, with the desired dwell
time 1.0/sw.

For all systems, all digital filters are brick- wall by default
with a cutoff at +/- sw/2.0. The only spectral widths that
are allowed are those for which filters exist. VnmrJ will set
sw to the closest allowed value to that which is entered. All
data from the system digital filters are time- corrected, so as
to remove the effects of digital- filter delay. The result of a
default time- correction, without futher adjustment, is a
standard FID whose first point represents the NMR signal as
it was at the digitizer immediately following the acquisition
delay alfa or ad.

The global PSG variable ddrtc is used to adjust the
first- order phase correction for all spectral widths of 2.5
MHz and smaller. The value of ddrtc is automatically set
from the parameter ddrtc, if it exists. If ddrtc does not
exist, the default corresponds to ddrtc=0.0. With
ddrtc=0.0, a single- pulse spectrum would require a
first- order correction of roughly lp=360.0*(rof2+alfa)*sw
degrees. If ddrtc=rof2+alfa, the correction would be
roughly lp=0. A fine adjustment of ddrtc, to allow for
finite- pulse bandwidth, can produce exactly lp=0. The value
of ddrtc is set in 0.4 s increments. To achieve greater
precision, fine- adjust rof2 as well, which can be set in
increments of 12.5 ns.

Use ddrtc='n' or set ddrtc=0.0 to turn off time correction,

A standard macro setrc is available to set ddrtc and rof2
exactly to produce lp=0.0. This macro is automatically
called by most standard liquids protocols but it is not
generally applicable to a new sequence. A writer of a new
sequence should decide whether setrc is appropriate to be
used with their sequence.

The local parameter ddrpm, if created, stands for the type of
pulse sequence and controls the setting of ddrtc by the
setrc macro. ddrpm can either be set to:

• "p" ("pulse" - ddrtc = rof2 + alfa + 2*pw/),

112 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

• "e" ("echo" - ddrtc = alfa or

• "r" ("refocus" - ddrtc = rof2 + alfa).

These ddrpm values are present and set with all standard
VnmrJ 3 pulse sequences.

The global PSG variable ddrcr and its parameter, if created,
control the cutoff- width of the digital filter. The default
corresponds to ddrcr=75 and a brick- wall filter. Smaller
values relax the cutoff and can improve the baseline in cases
where there is a first- point error due to ring- down. A value
of ddrcr=7.0 provides a reasonable cutoff and often avoids
first- point baseline roll.

Setting the receiver phase

The statement setreceiver(table)is used to assign a
quadrature receiver phase table, where mult is a table
name (t1 to t63) that is used to set the value the receiver
phase oph scan- to- scan.

The statement rcvrphase(mult)is used to set the full 360°
phase of the receiver in which mult is a real- time integer
(v1 to v42) or an integer table (t1 to t63) whose values
multiply a small- angle receiver stepsize. The stepsize is set
with the statement rcvrstepsize(value)in which value is
a double that sets the stepsize in degrees.

The total receiver phase is oph + mult*value. The rcvrphase
statement can be used to set up non- quadrature or cogwheel
phase cycling or it can be used to adjust the phase of the
receiver to follow the magnetization from a frequency offset
region of the sequence.

Setting the receiver offset

A digital receiver offset can be set in Hertz with the global
PSG variable roff and its associated parameter. The
parameter roff can be arrayed. The variable roff is a
double with a default of 0.0. A non- zero value applies that
offset to any acquisition block that follows. As a double,
roff cannot be changed scan- to- scan. A value of roff can
be used to detect a small spectral width about a region of
the spectrum other than the center.

Programming explicit acquisition

It is necessary to explicitly program acquisition if you wish

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 113

to place pulse- sequence statements after the acquisition or if
you wish to interleave acquisition of data points with
pulse- sequence statements. The statements of Table 32 are
used to program acquisition explicitly.

114 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

The rcvron and rcvroff statements

The rcvron statement is a compound statement, used to set
the receiver gate on, the transmit/receive, T/R, gate to
receive, and to blank the observe transmitter. This statement
adds a delay to the pulse sequence determined by the PSG
variable rof3. The default for rof3 is 2.0 s. The variable
rof3 can be set to other values by defining the parameter
rof3. The T/R switch and blanking are set at the start of the
statement. The receiver is gated on after the delay rof3.

The purpose of the rof3 delay is to ensure that there is
always a delay before receiver turn- on, in case the preceding
statement is a pulse with rof2 or rd of 0.0. Without a
delay, this condition can damage the mixer box in the Front
End. The value of rof3 can be set shorter in special cases
when you can make sure that the preceding receiver delay
will never be zero. An example of this case is when rcvron
is used to start a windowed acquisition period.

The rcvroff statement adds no time to the sequence. It
simultaneously gates the receiver off, the T/R switch to
transmit, and unblanks the observe transmitter. The rcvroff
statement also sets an internal gate to disable the automatic
blanking at the end of rgpulse.

The startacq statement

The compound statement startacq(delay) prepares the
digital receiver for acquisition during the time delay. This
statement first executes an acquisition gate during a period
of 50 ns. It then performs a rcvron statement with the delay
rof3, followed by a delay of delay-rof3 to allow the
receiver to come fully on.

Table 32 Receiver programming statements

acquire(points,dwell
)

Acquire points/2.0 real-imaginary pairs with
a time spacing, dwell.

endacq() End the acquisition of np/2.0 complex points.

rcvroff() Set the receiver off, T/R switch to transmit
and unblank the amplifier.

rcvron() Set the receiver on, T/R switch to receive
and blank the amplifier.

startacq(delay) Initialize the digital receiver and perform
rcvron during the time delay.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 115

The value of delay must be at least 50 ns + rof3. If it is
less, that delay will be executed any way. One should also
add an additional 1.0 to 2.0 s to allow the receiver to come
fully on. The statement startacq(alfa) duplicates the
function of implicit acquisition and uses the PSG variable
alfa , the acquisition delay, which is typically 4.0 to 6.0 s.
An implicit startacq(alfa) is added if the statement is not
found in the sequence.

The digital filter delay takes place after alfa, while the
receiver is supplying points. This delay is ultimately
corrected to zero by the digital filters. See the preceding
discussion of ddrtc. alfa is always positive, and it is set
just long enough to turn on the receiver fully.

The ad delay is replaced by alfa and it is set as a constant
of 4.0 to 6.0 s, independent of sw. The statement
startacq(ad) is used in some sequences. Here, the user
variable ad is used in preference to alfa, but otherwise the
function of startacq(ad) is identical to startacq(alfa).

The acquire and sample statements

The statement acquire(points,dwell) is used to produce
points/2.0 complex real/imaginary data- pairs with a time
spacing of dwell. The default arguments, acquire(np,1/sw),
duplicate the function of implicit acquisition. The first
argument points must be a double value, not an integer,
even though it is set as a whole number.

The default acquire statement produces np/2.0 complex
values listed as alternating real/imaginary pairs, with a
nominal total time at=np/(2.0*sw)and a nominal time
separation determined by 1/sw. The acquire statement adds
a time of (points*dwell)/2.0 to the sequence. During this
time, the digital receiver collects and processes points,
acquired at a rate of 80 MHz. These points are downsampled
and digitally filtered to produce the requested np points
with the dwell of 1/sw.

For the system digital receiver, only the product
points*dwell has an effect on pulse- sequence timing and
the individual arguments have no relationship with np and
1/sw.

The default acquisition acquire(np,1/sw) is recommended
when the pulse- sequence compatibility is required.

The sample(delay)statement removes the redundancy of the
arguments of acquire. The statement sample(np/(2.0*sw)

116 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

has a function identical to acquire(np,1/sw). The use of
sample avoids the misleading impression of acquire that the
user is programming the dwell time. If np and sw are not
used to directly set acquire or sample, it is the user's
responsibility to make sure that the programmed values of
points*dwell or delay are large enough to collect any
required np points with the desired sw. If the time is too
short, the pulse sequence will fail. There are no ill effects if
the time is too long.

The endacq statement

The endacq statement is placed after the last sample or
acquire statement. This statement gates the receiver off and
concludes sampling. The endacq statement adds no time to
the sequence itself, but an overhead delay will take place in
the next delay. An implicit endacq()statement is added if it
is not present in the sequence.

Windowed acquisition

A windowed acquisition is an explicitly- programmed
acquisition for which multiple acquire or sample statements
are separated by delays. Usually the delays contain
refocusing pulses or multiple- pulses for homonuclear
decoupling. Acquisition occurs in the windows between the
pulses. The most common uses are solids multipulse
experiments or Carr- Purcell Meiboom Gill, (CPMG)
experiments. Windowed acquisition is also used for
Echo- Planar Imaging (EPI) experiments and other imaging
experiments.

A windowed acquisition can be performed in one of two
modes, constant- sampling mode and explicit- sampling
mode. For constant- sampling mode, the acquisition period
begins with the first instance of acquire or sample and
continues until the end of the last acquire. During the
intervening delays, the receiver writes zeros. For
explicit- sampling mode, the receiver discards the zeros and
compresses the acquire statements into a single block.

Constant- sampling is the default. You set explicit sampling
with the statement setacqmode(WACQ|NZ) at some position
in the sequence before the beginning of acquisition.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 117

The statements below show an example of a windowed
acquisition following a standard pulse. The windows are
separated by a delay tdly.

rgpulse(pw,t1,0.0,0.0);

obsblank();

delay(rof2);

startacq(alfa);

loop(v1,v2); //v1 initialized with "nloops"

acquire(2.0,tau);

delay(tdly);

endloop(v2);

endacq()

The acquisition is initialized with startacq. The first data
point is collected at time rof2+alfa after the pulse. Data
collection occurs repeatedly during the windows of time tau,
separated by the time tdly, for each element of the loop.
The endacq() statement concludes sampling.

Constant-sampling mode

For constant- sampling mode, the receiver stores data points
during tau and stores zeros during tdly. The total time for
acquisition is nloops*(tau+tdly).

The expression nloops =
(double)((int)((np*(tau+tdly)/(2.0*sw)))) ensures that
the acquisition period at will accommodate any values of np
and sw. The truncation to an integer and then back to a
double type ensures that nloops is a whole number and that
the time for nloops will always be less than the required
acquisition time at.

If the sample for this acquisition were a narrow- line proton
spectrum, for example of water, the constant sampling mode
would chop the FID with periods of zeros. For a large
spectral width, such as 5 MHz, you will observe the chopped
FID. The Fourier transform of a FID with a large spectral
width is a center band surrounded by replicas each
separated by the chopping frequency.

For a small spectral width, less than the chopping frequency,
you would observe a normal proton spectrum. The brick- wall
filter ensures that the replicas do not fold into the spectrum.
For a spectral width of sw = ~ 1.0/(tau + tdly) the
nominal dwell is equal to the chopping frequency. For this
case the digital receiver produces one point per cycle,
nominal "single point acquisition". This case is the usual use

118 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

of the constant- sampling mode.

Constant- sampling mode preserves the natural T2 of the
water- line and chemical shifts remain unscaled. The signal
to noise for windowed sampling is lower than that of a fully
sampled spectrum where:

S/N = S/N100%* sqrt(tau/(tau+tdly))

The advantage of constant sampling mode is the simplicity of
processing. Constant- sampling is now used for all solids
multipulse and CPMG experiments that are supplied by
Varian.

Explicit-sampling mode

For explicit- sampling mode, the receiver discards the zeros
during tdly and compresses the periods of acquisition into
one block. For explicit sampling mode, the total time of
acqusition is nloops =
(double)((int)((np*tau/(2.0*sw)))).

The explicit- mode sequence would need to begin with
setacqmode(WACQ|NZ).

For explicit sampling, the data is a piecewise collection of
blocks from the FID in which the time between the centers
of two adjacent blocks is tau. If the percentage sampling is
low, as it would be in a multipulse experiment, the blocks
can be considered to be single "points" and so the natural
spectral width for this data is sw = 1.0/tau. The Fourier
transformation of this data would be a scaled spectrum with
a scaling factor of tau/(tau+tdly). Both chemical shifts and
linewidths are scaled.

Explcitly- sampled data is the default for Unity- series
spectrometers. This type of acquisition was made necessary
by the fact that the receiver could not digitize points (or
zeros) between the acquire periods. Unity- series, multipulse
sequences employed the statement acquire(2.0,2.0e-7)
and required that sw=5.0e6, using the 5.0 MHz digitizer
option. One then corrected the scale factor with the
parameter scalesw. This approach can also be used with
VNMRS (tau=2.0e-7) to produce a Unity compatible
mutipulse sequence, but the approach is not recommended.

Imaging sequences that use the explcit- sampling method are
described in the Imaging User Guide.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 119

Constant-sampling with pulses

When pulses are present in a windowed acquisition loop,
you must add rcvroff and rcvron statements to surround
the pulses. The following example adds a single pulse
between each window, using the standard acquisition,
receiver, and unblanking delays.

rgpulse(pw,t1,0.0,0.0);

obsblank();

delay(rof2);

startacq(alfa);

loop(v1,v2); //v1 initialized with "nloops"

acquire(2.0,tau);

rcvroff();

delay(rof1);

rgpulse(pw,t1,0.0,0.0);

obsblank();

delay(rof2);

rcvron();

delay(alfa-rof3);

endloop(v2);

endacq()

Here, a rcvroff follows each acquire statement, with a time
rof1 to fully unblank the transmitter. An explcit obsblank
statement follows the pulse immediately (though the rcvron
statement will eventually supply one) and a standard rcvron
follows the receiver delay rof2. After a time alfa-rof3, the
receiver is ready for the acquire statement of the next loop
element. You should remember that rcvron has a time delay
rof3. For this example, rof3 is subtracted from alfa for
clarity. As with the previous example, you must determine
nloops from np and sw for the chosen sampling mode.

Acquisition with multiple FIDS

Multiple acquisition periods can be programmed within a
single scan. The procedure is referred to as compressed
acquisition. Place startacq() - endacq() pairs around
each acquisition and allow 200 s between acquisition
periods.

The PSG variable nf and its parameter determine the
number of FIDS to be expected from a single scan. Each FID
should have np points. The result is known as a compressed
array. The parameter cf selects the required FID for

120 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

processing. For example, if a pulse sequence contains 4
acquisitions, nf=4, and enter cf=2 to process the second
acquisition.

Multiple acquisition periods can be used with both
compressed arrays and multiple receivers. Select the
appropriate value of cf to obtain the array for the required
acquisition. The value of nf is set to the product of the
number of explcitily acquired array elements and the
number of receivers that are used.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 121

Multidimensional NMR and Arrays

The pulsesequence function is compiled with C- looping
software to automatically perform multidimensional (nD)
experiments up to 4 dimensions in which the three indirect
dimensions involve looping. In addition, any parameter can
be assigned to an array of values (it can be "arrayed") and
the arrays can be run in nested or simultaneous loops. An
arbitrary number of arrayed parameters can be nested in
loops.

When arrays and nD spectra are run at the same time, by
default all parameter arrays are in the inner loops followed
next by the three indirect dimensions, for 2D, 3D, and 4D
spectra. One exception to this rule occurs for imaging
experiments if the first indirect dimension is a compressed
acquisition. In the case the compressed acquisition does not
require looping.

The nesting of loops involving arrayed parameters is
determined by the PSG global variable array and its
associated parameter. The parameter array is a string
containing the names of arrayed parameters punctuated by
either commas ',' or nested parentheses '()' . Parameter
names enclosed in parentheses are incremented
simultaneously in a single loop. Parameters or blocks of
parentheses separated by commas are nested from right to
left, with the innermost loop on the right.

The order of nD acquisition can be changed by explicitly
arraying the parameters d2, d3 and d4. A parameter can be
simultaneously arrayed with an indirect dimension by
including it in parantheses with one of these parameters.

Variables for nD dimensions

Table 33 summarizes the global PSG variables associated
with individual nD arrays.

Table 33 Multidimensional PSG variables

PSG variable PSG type VnmrJ parameter Description

d2_index int 0 to (ni-1) Current index of the d2 array

id2 real-time 0 to (ni-1) Current real-time index of the d2 array

inc2D double 1.0/sw1 Dwell time for the first indirect dimension

122 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

The global variable arraydim is initialized from its
parameter with the total elements in all parameter and nD
arrays. The global variable ix is an index from 1 to
arraydim.

The successive three indirect nD dimensions each have total
elements determined from ni, ni2 and ni3. The global PSG
variables d2_index, d3_index and d4_index are indexes to
these three dimensions.

In addition the three indexes are used to initialize the
real- time variables id2, id3 and id4. These real- time
indexes are available for real- time math and are used in
real- time loops and conditionals.

The global double variables d2, d3, and d4 provide standard
delays for their associated indirect dimensions. These
variables are initialized from their parameter values and
then incremented by the dwell times inc2D, inc3D, and
inc4D. Each dwell time is calculated from its indirect
spectral width sw1, sw2, and sw3 and rounded to 12.5 ns
timing resolution. The allowed indirect spectral widths are
only those that yield properly rounded dwell times. You can
always calculate the dwell exactly from the inverse of the
spectral width.

For many experiments, the indirect delays will contain
continuous decoupling patterns or spinlocks. It has been the
practice for most spectroscopic experiments to deliver these

d3_index int 0 to (ni2-1) Current index of the d3 array

id2 real-time 0 to (ni2-1) Current real-time index of the d3 array

inc2D double 1.0/sw2 Dwell time for the second indirect dimension

phase2 int phase2 Aquisition mode for the second indirect dimention

d4_index int 0 to (ni3-1) Current index of the d4 array

id4 real-time 0 to (ni3-1) Current real-time index of the d4 array

inc4D double 1.0/sw3 Dwell time for the third indirect dimension

phase3 int phase2 Aquisition mode for the third indirect dimention

ix int 1 to arraydim Current element of an arrayed experiment

Table 33 Multidimensional PSG variables (continued)

PSG variable PSG type VnmrJ parameter Description

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 123

patterns using programmed waveforms or spinlocks. The
indirect delays d2, d3 or d4 are used directly to supply the
length of a spinlock pulse or to supply an explcit delay
statement between #prgon and #prgoff (# = obs, dec..etc).
When using these spinlocks or waveforms, you should
synchronize the cycle time of the pattern with the indirect
dwell time. This synchronization can be accomplished most
reliably by calculation of the .DEC pattern file within the
pulse sequence.

The loop-endloop statements are also used to create
synchronized spinlocks during the indirect delays. In this
case, the real- time values of id2, id3, and id4 are available
as loop counts.

Compressed arrays and nD dimensions

It is sometimes possible to obtain all the data for an arrayed
experiment or an indirect dimension in a single increment
through use of multiple periods of acquisition. For example,
the Carr- Purcell- Meiboom- Gill, CPMG experiment can be
used to obtain multiple echos from a single excitation and
these echos can be summed to improve signal to noise.
Imaging experiments commonly use compressed
phase- encode and multislice dimensions.

For a compressed acquisition, the global PSG variable nf
and its associated parameter should be set to the total
number of acquisition periods. In this case, the total number
of points of detected data is np*nf. The Command and
Parameter Reference describes commands that are used to
parse the data to obtain the original arrayed FIDs.

Switchable loops for nD imaging experiments

The msloop-endmsloop and the peloop#-endpeloop (# =
1,2 or 3) statements allow you to control the execution of
pulse- sequence code in real- time loops in multidimensional
spectra and arrays. Arguments apv1 and apv2 should be
real- time variables to contain the loop count and the loop
index, respectively. These loops have two states, 'c' for
compressed mode, and 's' for standard mode, which are set
by the first argument state. The argument max_count is a
double that is used to set the value of the loop count apv2.
The state argument controls how max_count is used.

For the msloop statement, if state='c', then max_count is
used to initialize the real- time value of apv1 and a real- time
loop is executed max_count times. If state='s', then apv1

124 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

is assigned as one and the contents of the loop are executed
only once. In general, msloop can be used to either set the
real- time loop count from a double or to force it to be
executed once, depending on state.

The statements peloop and peloop2 are similar to msloop in
compressed mode. If state='s', then these statements
initialize apv2 from the index of the appropriate nD loop,
d2_index for peloop, or d3_index for peloop2. In general,
in standard mode, these statements can be used to set up an
internal loop over a group of statements within an indirect
dwell time. This construction can be useful, for example, if
an indirect dimension is a looped multipulse sequence,
rather than one of the delays d2, d3, or d4, though a similar
result can be obtained with loop-endloop by the use id2,
id3, and id4.

The switchable loops are used primarily for imaging
experiments to optionally compress nD multislice or
phase- encode dimensions into a single increment. In this
case, an acquisition period is nested in the innermost loop.
In compressed mode, all of the indirect data are combined
into a single FID. The value of nf must be set correctly so
that the data can be uncompressed for processing.

Imaging experiments also use the global PSG variable
seqcon and its associated parameter to control nD array
dimensions. The seqcon variable is a string of five
characters that are used to setup the nD array structure of
imaging experiments. Allowed characters are 'c', 's' and 'n'
for compressed, standard, and noloop. The placeholders refer
to echo, multislice, and 3 phase- encode dimensions, 1,2, and
3 respectively. When the multislice seqcon[1] and
phase- encode characters seqcon[N], N=2,3,4 are set to 'c',
imaging dimensions are set up with a single increment. For
's', a standard nD dimension is created. For imaging
experiments, state is set with the appropriate character of
seqcon. In general, users of switchable loops must set ni,
ni2, and ni3 with the appropriate values to correspond to
their use of state.

The statement loop_check compares the total number of
compressed FIDs with the value of nf and aborts if they are
not equal.

Table 34 Switchable loop statements

endmsloop(apv2) End multislice loop.

endpeloop(apv2) End any phase-encode loop.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 125

Arrayed data acquisition

The array parameter indicates which parameters are
arrayed. For NUS data collection, the sparsely sampled
indirect dimensions are treated as "diagonal" arrays. For
example, for a 3D data set with array='phase,phase2' and
both the ni and ni2 dimensions sparsely sampled, the array
parameter is treated by PSG as
array='(d2,d3),phase,phase2'

The following functions can be used to obtain information
about the looping elements specified by the array parameter
and any implicit arrays.

loop_check() Check nf for compressed dimensions.

msloop(state,max_count,apv1,apv2) Start multislice loop.

peloop(state,max_count,apv1,apv2) Start phase-encode loop for first indirect dimension.

peloop2(state,max_count,apv1,apv2) Start phase-encode loop for second indirect dimension.

Table 34 Switchable loop statements (continued)

Table 35 array parameter functions and PSG variables

int numLoops() Returns the number of looping elements. In the above case,
it would return 3. Diagonal arrays are treated as a single
looping element.

int varsInLoop(int index) Returns the number of parameters in the specified loop. For
non-diagonal arrays, it always returns a 1. For diagonal
arrays, it returns the number of parameters that are jointly
arrayed. Note that the index goes from 0 to numLoops-1. In
the case above, the return values would be
 index varsInLoop
0 2
1 1
2 1

char *varNameInLoop(int index, int
index2)

Returns the names of the parameters in the specified loop.
The second index goes from 0 to varsInLoop-1. In the case
above, the return values would be
index index2 varNameInLoop
 0 0 "d2"
 0 1 "d3"
 1 0 "phase"
 2 0 "phase2"

126 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Managing arrays

There are no global PSG variables (similar to d2_index and
ni) to supply the indexes and limits of array dimensions.
However, the size of any array is available to a pulse

int valuesInLoop(int index) Returns the number of elements in the specified loop. In the
case above, the return values would be
index valuesInLoop
 0 CSdensity*ni*ni2
 1 array size of parameter phase
 2 array size of parameter phase2

Additional PSG variables

int initializeSeq This parameter is set to 1 the very first time the
pulsesequence() function is called. Otherwise, it is
set to 0. Many sequences currently use the software idiom
if (ix == 1)
One time initializations are often conditional upon this if
statement. Depending on the sampling scheme, ix may not
be equal to 1 on the first call to pulsesequence(). The
initializeSeq parameter can always be used as an
indicator that pulsesequence() is being called for the
first time.
d2_index, d3_index, d4_index and their real-time
counterparts id2, id3, and id4 will reflect in increment of the
indirect dimension. For example, if ni=128 and
CSdensity=25, there will be 32 distinct values of d2. The
value of d2_index will reflect the current index from the
sampling schedule. That is, it will not go from 0 to 31 but
rather will take on 32 values randomly selected between 0
and 127, as per the sampling schedule.
Note that many sequences use the idiom
 if (ix == 1) d2_init = d2;
 t1_counter = (int) ((d2 - d2_init) *
sw1 + 0.5);

The d2_index will make this obsolete.

Table 35 array parameter functions and PSG variables

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 127

sequence as an integer return from the getarray statement.
It is straightforward to parse the array variable to get the
array loop structure and calculate the indexes from the
array dimensions and ix index.

Multidimensional phases

VnmrJ contains general Fourier transform commands ft2d
or wft2d that allow the user to customize the addition of
arrays of nD spectra for various purposes. These methods
are fully described in the Spectroscopy User Guide. They
require you to manipulate the phase tables in arrays.

It is a standard practice to obtain pure- phase quadrature
detection for indirect dimensions by combining arrays of nD
spectra, obtained with different phase tables, also called
Hpercomplex Fourier Transform, or to cycle the phases of
individual pulses from increment to increment, also called
time- proportional phase incrementation or TPPI. You can
also use this approach to manage artifactual peaks, also
called FAD or States TPPI.

The global PSG variables phase1, phase2, and phase3 are
used to index the phase tables of the three indirect
dimensions. These variables are automatically initialized
from the parameters phase, phase2, and phase3. Note that
the variable phase1 is initialized from the parameter phase.

The values of the phase parameters are indexes 0,1,2,3, etc.
that are associated with the initialization of particular phase
tables in the pulse sequence. By convention, phase=0 is used
alone to represent an absolute value phase cycle, phase=1
and phase=2 represent the cosine and sine components of
the hypercomplex method or States TPPI, and phase=3 is
used to represent simple TPPI.

It is the responsibility of the user to add the correct code to
initialize phase tables. Some examples for States TPPI (the
most common method) follow.

States TPPI using tables and global PSG indexes

This example uses phase tables and the States TPPI is
obtained using a scaler addition to the appropriate tables,
using a global PSG index. This particular example is a fairly
recently programmed solids heteronuclear correlation.

//Add STATES TPPI ("States with "FAD")

tsadd(phRec,2*d2_index,4);

if (phase1==2) {

128 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

tsadd(phHtilt3,2*d2_index+1,4);

}

else {

tsadd(phHtilt3,2*d2_index,4);

}

setreceiver(phRec);

The array phase=1,2 produces two 2D data sets. In each set,
the 2D detection pulse and the receiver phase (ph3Htilt
and phRec in this example) are toggled by 180° on alternate
increments using a tsadd statement of 2*d2_index, modulo
4 (FAD). For phase=2, the detection pulse is incremented by
1 using the expression 2*d2index+1, modulo 4 (States) to
convert a cosine table into a sine table.

The setreceiver statement produces the receiver phase oph
from the phase table, phRec.

The approach above is called "States TPPI" because the
detection pulse is cycling through four phases every two
complex increments and "States" because two arrayed data
sets are used to produce the 2D data. Typically, this method
is called "States + FAD".

States TPPI using real-time math

The second example illustrates States TPPI using real- time
variables. Here, the phase tables are represented in
successive values of real- time variables that were obtained
through real- time math calculation on each increment (not
shown). This example comes from a standard two- pulse
homonuclear correlation experiment for liquids.

/* Add States with phase=2 */

mod4(v1,oph);

if (iphase==2) {

incr(v1);

}

/* Add FAD for phase=1 or phase=2 */

if ((iphase==1) || (iphase==2)) {

initval(2.0*(double)((int)(d2*getval("sw1")+0.5)%2),v13);

add(v1,v13,v1); add(oph,v13,oph);

}

The array phase=1,2 produces two 2D data sets. For
phase=2, the prep pulse v1 is incremented by 1 using
incr(v1) (States) to convert a cosine table into a sine table.
In both sets, the prep pulse and the receiver phase (v1 and

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 129

oph in this example) are toggled by 180° on alternate
increments using an add statement of v13 (0,2,0,2…)
(FAD).

In this older sequence, v13 is assigned using a calculation of
the number of dwell times from d2. An alternative that
exists now is to use mod2(id2,v13). Here, the receiver
phase oph has been calculated directly, so setreceiver is
not needed.

130 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Syntax for Controlling Parallel Channels

Each transmitter, receiver and gradient device is controlled
by a separate parallel processor (a controller). At run- time
the compiled C program assigns each controller an identity
(a channel), and generates the appropriate acodes for each.
The identity may be one of the RF channels, obs, dec, dec2,
etc for transmitters, one of the receivers or one or more
streams for gradient output, all loosely referred to as
channels. During acquisition the controllers run in parallel
and are synchronized with a common 80 MHz clock, but
otherwise there is no communication between controllers
during acquisition. The C- code syntax of the pulse program
must completely describe the timing relationship between the
acodes of each channel at run time.

The PSG provides four syntaxes to control timing of
channels. These are

1. Synchronous Timing

2. A parallelstart-parallelend Section

3. The nowait Attribute

4. Waveform Control with obsprgon-obsprgoff

This section describes the four syntax methods and provides
information about their use.

Synchronous Timing Syntax

Any pulse sequence statement that executes a delay causes a
synchronous delay to be executed on all other channels. For
example an rgpulse statement executes three delays, pw, RG1
and RG2 along with statements to control the transmitter
gate, the phase and blanking (See figure 1). In synchronous
mode the rgpulse statement also executes a delay with a
value time = pw + RG1 + RG2 on every other operational
controller, including the other RF channels, the receivers and
the gradients. Synchronous syntax assures that the next
statement occurs after the rgpulse on any channel.
Synchronous syntax is the default.

A parallelstart – parallelend Section

The statement parallelstart(chnl) begins a parallel
section on the designated channel where chnl can be "obs",
"dec", "dec2", etc or "rcvr" or "grad". For example

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 131

parallelstart("obs")designates the obs channel as a
parallel section. With the start of a parallel section, only
statements for that channel are allowed. Statements that
cause a delay do not place a synchronous delay on other
channels.

The most important statements that are allowed for obs are
rgpulse, obspower, obsoffset, obspwrf, obsblank,
obsunblank, txphase, xmtrphase, obsstepsize,obsprgon
and obsprgoff. For the obs parallel section the delay and
hsdelay statements are executed only on obs. Consult the
section "Pulse- Sequence Statements" in this chapter for more
information about statements for the obs channel.

A second parallelstart statement begins a section for a
new channel, for example parallelstart("dec") begins a
section for dec. Only statements for dec are allowed.
Statements that add time add it to dec, beginning
synchronously with the time of parallelstart("obs"). One
may start parallel sections for as many channels as required.
One must create sections for at least two channels and for
any channel that has activity during the section.

All of the parallel sections are ended by single parallelend
statement. The parallelend statement places
synchronization delays in each section so that its duration
will match the duration of the section with the longest
duration. The synchronization delay of the longest section is
0.0. The total delay is also applied synchronously to
channels that were not included as parallel sections.

It is important to note that the parallelend statement is
executed at run time, before the acquisition begins. This
restriction precludes the use of real- time statements such as
loop-endloop, ifzero-elsenz-endif and vdelay in
parallel sections. Real- time statements might change the
total delay of a parallel section after the synchronization
delay has been calculated. For this reason they are
forbidden. Special fixed loops are available for use in a
parallel section. See the discussion of "Looping in Parallel
Sections" below.

Table 36 Statements to create parallel sections

parallelend() End parallel section of pulse sequence

parallelstart(chnl) Start parallel section of pulse sequence

parallelsync() Position parallel synchronization delays

132 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Parallel sections have asynchronous syntax. There is no
mandatory timing- syntax that associates statements in two
different parallel sections. It is good practice to arrange the
delays of parallel sections to sum to the same value. With
this practice one does not have to depend upon
parallelend to synchronize the sections. However that
practice is not mandatory.

Asynchronous syntax frees the programmer from
unnecessary C coding. One can more readily program custom
simultaneous pulses where, for example, pulses of two
channels "pass through each other". Another example is the
opportunity to use incommensurate loops (with different
cycle times) on two channels. For example one might
program a spinlock or decoupler pattern on one channel
with a loop and a pattern of pulses on the other. While
spinlocks can also be executed with waveforms (for example
obsprgon-obsprgoff, or obsspinlock, loops often have
much less programming overhead than waveforms.

A parallelstart-parallelend construction can be placed
multiple times, anywhere in a sequence. It can be placed
within another loop, real- time or fixed, or within a real- time
conditional. One is free to construct the entire sequence as a
set of parallel sections.

parallelstart("obs");

 delay(d2_max/2.0);

 rgpulse(pw,oph,0.0,0.0);

 delay(d2_max/2.0);

parallelstart("dec");

 delay(d2);

 decrgpulse(pw,oph,0.0,0.0);

parallelstart("dec2");

 delay(d2_max-d2);

 dec2pulse(pw,oph);

parallelend();

In the example a pulse on obs is centered in a delay d2_max.
As the delay d2 increases from 0.0 to d2_max the pulse on
dec moves from the beginning to the end of the d2_max
delay. The pulse on dec2 moves from the end of the delay to
the beginning. To obtain this result with synchronous syntax
would require complicated conditionals.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 133

The parallelsync statement is used to specify when the
synchronization delay is executed. For example, if
parallelsync is placed at the beginning of the section, the
synchronization delay is executed at the beginning of the
section. The parallelsync statement can occur anyplace in
a section and can occur only once. If no parallelsync
statement is present the synchronization delay is executed at
the end of the section. Even though it is redundant, some
programmers may still wish to include parallelsync at the
end of parallel sections for clarity.

The following two uses of parallelsync give the same
result.

parallelstart("obs");

 delay(d2_max);

parallelstart("dec")

 delay(d2_max-d2-pw);

 decrgpulse(pw,oph,0.0,0.0);

parallelend();

parallelstart("obs");

 delay(d2_max);

parallelstart("dec")

 parallelsync();

 decrgpulse(pw,oph,0.0,0.0);

 delay(d2);

parallelend();

The amount of time in each parallel section must be equal.
However, there is also a minimum time event for the system.
If the time difference between parallel sections is nonzero
but less than the minimum time event, the minimum time
event is added to the parallelsync delays on every channel.
One cause of timing errors may be due to round- off errors,
often caused be correcting the phase during a pulse by
multiplying the pulse by 2.0/PI. Two pulse elements help
avoid these round- off problems.

calcDelay(delay)

pwCorr(delay)

134 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Each of these return the delay, rounded correctly to the
minimum time event. For example:

delay(tauxh - gt5 -gstab - pwC +
calcDelay(2.0*pwC/PI));

The second pulse element is pwCorr(delay), which does the
multiplication by 2/PI and rounds the result correctly. The
above delay could be rewritten as

delay(tauxh - gt5 -gstab - pwC + pwCorr(pwC));

Looping in Parallel Sections

Special loop statements are provided for use in parallel
sections, the rlloop-rlendloop and kzloop-kzendloop
statements. These loops are fixed loops. The fixed loops
operate in a manner similar to the loop-endloop
statements, except that the number of repetitions is known
at run time.

For the statement rlloop(count,vcount,index) the first
argument count is an int containing the number of
repetitions. The second argument vcount is the real- time
variable, initialized with count. The third argument index is
a real- time index of the loop. One should not change vcount
or index with real- time math. In this case the pulse
sequence may not operate or it may operate in an
unpredictable manner. If count is 0 the loop will not be
executed.

double cycletime = getval("cycletime");

int count = 4;

rlloop(count,v1,v2;)

 delay (cycletime);

rlendloop(v2);

In the example of rlloop-rlendloop the C integer count
sets four repetitions of the delay cycletime. The real- time
variable v1 is initialized with a value of 4. Neither v1 or v2
should be changed with real- time math.

double cycletime = getval("cycletime");

double count = 4;

initval(count,v1);

loop(v1,v2;)

 delay (cycletime);

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 135

endloop(v2);

For synchronous syntax this use of loop-endloop is
equivalent to the use of rlloop-rlendloop above, except
that the value of v1 can be changed scan to scan.

The statement kzloop(time,vcount,index)is similar to
rlloop with the exception that one specifies delay, the total
duration of the loop rather than the count. The loop count is
calculated from delay. The loop ends before the total
duration and a delay will be added after the loop to
complete the duration. If the duration is insufficient to
execute one repetition only a delay will be executed.

In this example of kzloop-kzendloop, the loop count is
calculated as trunc(14.0/3.0) = 4 repetitions of 3 seconds.
The remaining duration, 14.0 – 4*3.0 = 2.0 seconds will be
added as a delay after the repetitions.

kzloop(14.0,v2,v11);

 delay(3.0);

kzendloop(v11);

For the statements rlendloop(index) and
kzendloop(index) the v- variable argument index should be
the same as the third argument of rlloop and kzloop. One
should use separate v- variables for vcount in multiple
instances of rlloop and kzloop.

When placed in a parallel section the delays associated with
statements in the loop will be added only to the designated
channel. The fixed loops can also be used with synchronous
syntax. For synchronous syntax the total delay of the loop is
duplicated on the other channels.

The restrictions associated with the fixed loops are of little
consequence in real pulse sequences. The cases of concern
are those where the count v- variable of loop might be

Table 37 Fixed loops for parallel sections

kzendloop(index) End real-time loop with fixed duration

kzloop(time,vcount,i
ndex)

Start real-time loop with fixed duration

rlendloop(index) End real-time loop with fixed count

rlloop(count,vcount,
index)

Start real-time loop with fixed count

136 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

changed with real- time math scan- to- scan, an unlikely
circumstance. That construction is not possible with the
fixed loops, but it is possible using loop-endloop with
synchronous timing.

It is possible to derive delay of kzloop from the variable d2,
the F1 delay or to derive count of rlloop from d2_index,
the int F1 index. The same is true for the other dimensions.
This use of fixed loops is analogous to the use of the
v- variable id2 as the count v- variable of loop, which can
only be done with synchronous syntax. This kind of looping
provides a method to generate a spinlock or decoupling
pattern during an indirect dimension.

Allowed Statements and Calculation in a Parallel Section

Any C- code is allowed in a parallel section, including those
C statements such as if-else, for and while which hold
pulse- sequence statements. All C- code is executed at
run- time and so it presents no problem for synchronization
at the parallelend statement. All other pulse sequence
statements can be used in parallel sections unless they are
designated real- time or unless they provide acodes on a
channel other than that designated by parallelstart.

For most sequences the C if-else statement provides a
fixed conditional and it is a reasonable replacement for
ifzero-elsnz-endif statement. The C conditional is
resolved at run time and so does not affect synchronization.
Use of the C conditional prevents conditional choices that
occur scan- to- scan but not increment- to- increment. If the
former is required, for example a pulse width that changes
scan- to- scan, one must use synchronous syntax.

Real- time math statements and other statements that set
v- variables or tables are allowed as long as they do not
change the v- variables used as vcount and index for fixed
loops.

The existing simultaneous- pulse- sequence statements such a
simpulse cannot be used in a parallel section because they
provide acodes for multiple channels. However, parallel
sections are designed for the creation of custom, more
flexible simultaneous pulses to replace the standard
simultaneous pulses that are supplied.

The single- channel shaped- pulse statement, the spinlock
statements, obsspinlock, decspinlock, etc and the
waveform statements such as obsprgon-obsprgoff are
allowed. The pairs of statements obsprgon and obsprgoff

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 137

can have any relationship to a set of parallel sections,
both- outside, both- inside or only one- inside and
one- outside. The only requirements are that obsprgoff must
exist somewhere in the sequence following obsprgon and
that the channel designated by the statement agree with that
designated for the section in which it resides.

The xgate and rotorsync commands are allowed in parallel
sections with a strong caveat. The xgate command stops the
output of all channels synchronously and resumes them
when an external trigger arrives. That means that one must
pay attention to the state of the other channels when xgate
occurs. For example, one can program an xgate in one
section that splits a pulse in another. This is a legal
operation and it is up to the programmer to decide whether
it should occur. Despite the fact that xgate occurs in
real- time it adds the same delay to all channels, so it does
not invalidate the synchronization of parallelend. The
rotorsync statement is constructed from xgate statements
and so has the same properties.

Programming the Receiver and Gradients

The statement parallelstart("rcvr") creates a parallel
section for the receiver. If programming a parallel receiver,
the statements startacq and endacq should precede and
follow the parallel sections. With (VnmrJ3.2) support of
multiple receivers is not available. The reason for this is that
the standard startacq and endacq pulse elements control
gates on both the receiver and observe transmitter. A set of
additional pulse elements separate these controls and can be
used in parallel sections. Care must be taken so that the
timing of events on the receiver are coordinated with the
timing of events on the observe transmitter.

Statements for acquisitions in parallel sections.

startacq_obs(delay)
startacq_rcvr(delay)

acquire_obs(points,dwell)
acquire_rcvr(points,dwell)

endacq_obs()
endacq_rcvr()

parallelacquire_obs(delay,points,dwell)
parallelacquire_rcvr(delay,points,dwell)

These statements perform the appropriate actions on just

138 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

the observe transmitter or receiver.

The parallelacquire_obs and parallelacquire_rcvr pulse
elements combine the operations of the corresponding
startacq_xxx, acquire_xxx, and endacq_xxx statements. An
example of use is:

parallelstart("obs");
 parallelacquire_obs(alfa,np,1.0/sw);

parallelstart("rcvr");
 parallelacquire_rcvr(alfa,np,1.0/sw);

parallelstart("dec");
 // provide a custom decoupling sequence here

parallelend();

If the time from the start of the parallel section to the start
of the startacq_xxx statements do not match, an error will
be given. If the time from the start of the parallel section to
the start of the endacq_xxx statements do not match, an
error will be given. If the time from the start of the parallel
section to the start of the parallelacquire_xxx statements
do not match, an error will be given. The acquire_obs does
not control any gates on the observe transmitter and is
provided to make it easy to synchronize the endacq_xxx
elements. It really corresponds to a delay of duration 0.5 *
points * dwell.The statement parallelstart("grad")
creates a parallel section for PFG applications of gradients.
The statements rgradient and zgradpulse are allowed.
With VnmrJ3.2 other gradients statements are not supported.

The nowait Attribute

The nowait attribute is a property of gradient pulses that
allows the parallel execution of non- gradient statements
during a gradient pulse. Effectively, the nowait attribute
creates a parallel section for the gradient pulse.
Pulse- sequence statements following the gradient pulse are
applied synchronously with the beginning of the gradient
pulse. Synchronous timing occurs for all other channels. The
gradient pulse ends after its designated duration,
independently of the non- gradient channels. See the section
"Gradient Control for PFG and Imaging" for more
information about the nowait attribute.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 139

Waveform Control with obsprgon-obsprgoff

The waveform statement obsprgon also creates a parallel
section for the obs channel through a mechanism very
different from parallelstart. Waveform patterns are often
the preferred method for decoupling or to create a spinlock
on one or more channels simultaneously. Waveforms on
multiple channels can be started and stopped synchronously
on multiple channels with no pre- delays or post- delays. See
the section "Shaped Pulses and Waveforms" in this chapter
for more information about waveforms.

The obsprgon statement takes control of the output of the
obs channel and places it under the control of a waveform
pattern that is external to the pulse sequence. This pattern
takes controls of the amplitude, the phase and the gate of
the obs channel and blocks the execution of any other
pulse- sequence statements for this channel. The timing of
the obs channel remains synchronous with all other
channels. The waveform pattern can execute instructions
that are asynchronous with other channels because these
instructions are generated outside of the pulse sequence
code.

The obsprgoff statement stops the waveform pattern and
returns control to the pulse sequence. The timing of
obsprgoff is synchronous with the pulse sequence, not the
waveform, and so it might halt the waveform mid- cycle or
even mid- element.

The ability to halt the waveform mid- cycle is a benefit when
a waveform statement is used during an indirect delay. The
cycle time of the decoupling need not be synchronous with
the end of the indirect delay. A loop in a parallel section
cannot be halted mid- cycle. The parallel section expands to
accommodate the total duration of the loop, a value which
may be inconsistent with the duration of the indirect delay.

The statements decprgon-decprgoff,
dec2prgon-dec2prgoff, dec3prgon-dec3prgoff and
dec4prgon-dec4prgoff have propertied similar to
obsprgon-obsprgoff for their respective channels.

Waveforms have access to the interpolation processor. They
can potentially run with greater efficiency than loops and
generate states faster in a sustained manner. See the
discussion of interpolation and userDECshape in this
chapter. When programmed properly, a waveform can
generate new states in a sustained manner with a 25 ns or
50 ns step size. For a loop the minimum step size that can

140 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

be sustained is approximately 200- 400 ns per step.

A waveform can be programmed to generate a
phase- ramped, frequency offset, an essential element in
many sequences. While it is possible to generate a phase
ramp with a loop (see the section "Setting the Amplitude
phase and Gate from Tables" in this chapter), the
programming is also difficult and execution is less efficient
than that of a waveform.

Waveform patterns are supplied from a source external to
the pulse program, usually a .DEC file in the directory
~/vnmrsys/shapelib or from a file passed directly from the
run- time C program, as when userDECshape is used.
Waveform patterns usually have a large programming
overhead. They are often generated with an external
program such as Pbox. With more recent sequences they are
generated directly from calculation in the C program, which
might be a call to Pbox with special pulse sequence
elements, or through the use of included functions or an
object library, as in solidstandard.h or SGL for imaging.
Often the use of a loop has less programming overhead and
is simpler to apply.

Waveforms are difficult to program for homonuclear
decoupling because waveforms do not control of the
amplifier blanking and T/R switch gate. While VnmrJ has a
feature for automatic application of homonuclear waveforms,
loops of shaped pulses are preferred to waveforms for user
programming.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 141

Parameters and Variables

This section describes parameters and variables used in
programming in VnmrJ.

Categories of parameters and variables

At run- time, a compiled pulse sequence accesses a
parameter table in the workspace in which it is to be run
and uses those values to construct the real- time program of
acodes that will run on the acquisition computer.

A set of standard parameters are automatically accessed to
initialize a set of global PSG variables. The global PSG
variables are declared extern in the PSG object library and
they are automatically known to the pulsesequence
function. The appendix lists the set Global PSG variables for
spectroscopy and imaging, most of which are described in
this manual. Parameters used to initialize these variables
almost always have the same name as the variable.
Parameter definitions are found in the Command and
Parameter Reference.

A user may also define additional user variables in the
pulsesequence function. These variables are local to the
pulse- sequence function and they must be initialized for
every increment of a multidimensional experiment or array.
User variables should be explicitly defined as a C type. User
variables are initialized from user parameters in the
parameter table, usually of the same name. Table 35 shows
the statements used to handle parameter values.

Parameters and their values are found in the file
vnmrsys/exp#/curpar of the user in which exp# is the
current workspace. A user must create the additional
parameters they get from the pulsesequence function. If the
parameters are not found, a warning will be delivered to the
text window and a default value will be set. Chapter 5 of
this manual Creating and Modifying Parameters describes
the command- line statements that are used to create and
control parameters.

The parameters of the parameter table are designated
currentand they must contain values to initialize all the
global and user variables of the sequence. If the parameter
table is empty, VnmrJ will fail. It is a good practice to
initially choose a parameter set from a working sequence to
ensure that all the standard parameters are present. Once it

142 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

has been modified for the sequence, save the parameter file
as a .par file in the vnmrsys/parlib directory of the user.
When transferring a sequence to another system, it is
important to also to send the .par file.

Statements used to handle parameters

The statements in Table 35 can be used to input or output
parameter values to the pulse sequence. All input/output
occurs at run- time before the acquisition of the first scan.

The command go('check') can be used to perform all
run- time input/output without starting acquisition. The value
of the global PSG integer checkflag is 1 if the 'check'
argument is used. The value of checkflag can be used in a
C conditional if input/output is required only with
go('check').

The value of the global integer ix is 1 (not 0!) on the first
increment of any multidimensional or arrayed experiment.
The value of ix can be used in a C conditional to reserve
input/output to the first increment.

If a parameter name is not found, the variable will be given
a default value, 0 for numerics and '' for strings. A
message will be sent to the Text page of the Process tab of
the VnmrJ interface.

Statements to load parameter values

The statement getval is used to obtain a numeric parameter
value and return it to a double variable. A user varname
must be defined and parname must be the parameter name
placed in double quotes or a char pointer to the name. Some
examples of the syntax are:

Table 38 Statements to handle parameter values

pardim=getarray(parname,arrayname) Set a double array from an arrayed parameter.

getstr(parname,varname) Obtain the value of a string parameter.

varname=getval(parname) Obtain the value of a numeric parameter.

putarray(parname,varname,pardim) Set an arrayed parameter from a double array.

putCmd(command,varnames) Send a command string to the VnmrJ command line.

putstring(parname,varname) Set a string parameter from a character array.

putvalue(parname,varname) Set a numeric parameter from a double variable.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 143

double mix;

mix = getval("mix");

or

double mix = getval("mix")

A getval statement can also be used as an argument to
another statement, as shown in the following example:

delay(getval("mix"));

The statement getstr is used to obtain a string parameter
parname and set a string variable varname. The variable
varname must be defined as a C char array and parname
must be the parameter name placed in double quotes or a
char pointer to the name. An example is:

char[MAXSTR] myflag;

getstr("myflag",myflag);

The getval and getstr statements are executed with every
increment. If a parameter is arrayed, the correct array
element will be loaded.

The statement getarray is used to load all of the numeric
values of an array at once into an array of doubles. This
statement loads values that will be assigned to a real- time
list.

The argument arrayname is the C array and parname must
be the parameter name placed in double quotes or a char
pointer to the name. An example is:

int myarraydim;

double myarray[256]; //myarraydim must be less than 256.

myarraydim = getarray("mylist",myarray);

Set protection bit 8(256) of the arrayed parameter
setprotect('myarray',256) to suppress its loading with
each array increment.

Statements to output parameter values

The statement putvalue is used to return a numeric value
to a parameter from the pulse sequence. The argument
varname must be defined as a C double type and parname
must be the parameter name in double quotes or a char
pointer to that name. The putvalue statement might be used
to return a value that has been altered by the pulse
sequence.

double mix = getval("mix");

mix = (double) tau*((int) mix/tau + 0.5);

144 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

//round mix to multiples of tau

putvalue("mix, mix); //update the parameter table

The statement putstring is used to return a string value to
a parameter from the pulse sequence. The argument varname
must be defined as a C array of characters and parname
must be the parameter name in double quotes or a character
pointer to that name.

getstr("dm",dm); // originally dm='nnn'

dm[2]='y'; // fix the decoupling on during
// acquisition

putstring("dm",dm)// update the parameter table

The statement putarray is used to return all of the elements
of a numeric array from the pulse sequence. The argument
varname must de defined as a C array of double and
parname must be the parameter name in double quotes or a
char pointer to that name.

An example of the syntax is:

double mylist[6] = 1.0,2.0,3.0,4,0,5.0,6.0;

putarray("list",mylist,6);

The numeric parameter list should exist in the parameter
table.

The statement putCmd is used to execute an expression or a
macro on the command line from the pulse sequence. The
argument command must be a valid expression for the
command line contained in double quotes or a pointer to
that character array. One use of putCmd is to execute a
more complicated parameter operation:

d1=1.0;

putCmd("setvalue('d1',%g,'processed')",d1);

Here the macro setvalue is used to set the value of d1 in
the processed parameter tree.

The putCMD statement allows the use of format expressions,
similar to the C printf command. The designation
varnames refers to one or more variables to be formatted.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 145

PSG Variables

This section describes PSG variables used in programming
VnmrJ.

Global PSG Variables

The below table displays a list of Global PSG variables for
spectroscopy.

Table 39 Global PSG Variables

Acquisition

PSG Global
Variable

C-Variable
Type

PSG Variable Description

extern char il[MAXSTR] interleaved acquisition parameter,'y','n'

extern double inc2D t1 dwell time in a 3D/4D experiment

extern double inc3D t2 dwell time in a 3D/4D experiment

extern double sw spectral width

extern double nf Number of FIDs in pulse sequence

extern double np Number of data points to acquire (real)

extern double nt Number of transients

extern double sfrq Observe frequency MHz

extern double dfrq Decoupler frequency MHz

extern double dfrq2 2nd decoupler frequency MHz

extern double dfrq3 3rd decoupler frequency MHz

extern double dfrq4 4th decoupler frequency MHz

extern double fb Filter bandwidth

extern double bs Block size

extern double tof Observe transmitter offset

extern double dof Decoupler offset

extern double dof2 2nd decoupler offset

extern double dof3 3rd decoupler offset

extern double dof4 4th decoupler offset

extern double gain Receiver gain value, or 'n' for autogain

extern double dlp Decoupler low power value

extern double dhp Decoupler low power value

146 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

extern double tpwr Transmitter pulse power

extern double tpwrf Transmitter fine linear attenuator for pulse

extern double dpwr Decoupler pulse power

extern double dpwrf Decoupler fine linear attenuator for pulse

extern double dpwrf2 2nd decoupler fine linear attenuator

extern double dpwrf3 3rd decoupler fine linear attenuator

extern double dpwrf4 4th decoupler fine linear attenuator

extern double dpwr2 2nd decoupler power course attenuator

extern double dpwr3 3rd decoupler power course attenuator

extern double dpwr4 4th decoupler power course attenuator

extern double filter Pulse amp filter setting

extern double xmf Observe transmitter pulse width

extern double dmf Decoupler modulation frequency

extern double dmf2 Decoupler modulation frequency

 dmf3

 dmf4

extern double fb Filter bandwidth

extern double vttemp VT temperature setting

extern double vtwait VT temperature time-out setting

extern double vtc VT temperature cooling gas setting

extern double cpflag Phase cycling; 1=no cycling, 0=quad detect

extern double dhpflag Decoupler high power flag

Pulse Widths

PSG Global
Variable

C-Variable
Type

PSG Variable Description

extern double pw Transmitter modulation frequency

extern double p1 A pulse width

extern double pw90 90° pulse width

extern double hst Time homospoil is active

Delays

PSG Global
Variable

C-Variable
Type

PSG Variable Description

Table 39 Global PSG Variables

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 147

extern double alfa Time after receiver is turned on that acquisition begins

extern double beta Audio filter time constant

extern double d1 Delay

extern double d2 An auto incremental delay, used in 2D experiments

extern double d3 An auto incremental delay, used in 3D experiments

extern double d4 An auto incremental delay, used in 4D experiments

extern double pad Preacquisition delay

extern double padactive Preacquisition delay active parameter flag

extern double rof1 Amplifier unblanking delay before pulse

extern double rof2 Amplifier blanking delay

2D/3D/4D

PSG Global
Variable

C-Variable
Type

PSG Variable Description

extern double totaltime Total timer events for an experiment duration estimate

extern int phase1 Used for 2D acquisition

extern int phase2 Used for 3D acquisition

extern int phase3 Used for 4D acquisition

extern int d2_index d2 increment (from 0 to ni1)

extern int d3_index d3 increment (from 0 to ni21)

extern int d4_index d4 increment (from 0 to ni31)

Programmable Decoupling Sequences

PSG Global
Variable

C-Variable
Type

PSG Variable Description

extern char xseq[MAXSTR]

extern char dseq[MAXSTR]

extern char dseq2[MAXSTR]

extern char dseq3[MAXSTR]

extern char dseq4[MAXSTR]

extern double xres Digit resolution prg dec

extern double dres Digit resolution prg dec

extern double dres2 Digit resolution prg dec

Table 39 Global PSG Variables

148 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

extern double dres3 Digit resolution prg dec

extern double dres4 Digit resolution prg dec

Status Control

PSG Global
Variable

C-Variable
Type

PSG Variable Description

extern char xm[MAXSTR] Transmitter status control

extern char xmm[MAXSTR] Transmitter modulation type control

extern char dm[MAXSTR] 1st decoupler status control

extern char dmm[MAXSTR] 1st decoupler modulation type control

extern char dm2[MAXSTR] 2nd decoupler status control

extern char dmm2[MAXSTR] 2nd decoupler modulation type control

extern char dm3[MAXSTR] 3rd decoupler status control

extern char dmm3[MAXSTR] 3rd decoupler modulation type control

extern char dm4[MAXSTR] 4th decoupler status control

extern char dmm4[MAXSTR] 4th decoupler modulation type control

extern char homo[MAXSTR] 1st decoupler homo mode control

extern char homo2[MAXSTR] 2nd decoupler homo mode control

extern char homo3[MAXSTR] 3rd decoupler homo mode control

extern char homo4[MAXSTR] 4th decoupler homo mode control

extern int xmsize Number of characters in xm

extern int xmmsize Number of characters in xmm

extern int dmsize Number of characters in dm

extern int dmmsize Number of characters in dmm

extern int dm2size Number of characters in dm2

extern int dmm2size Number of characters in dmm2

extern int dm3msize Number of characters in dm3

extern int dmm3msize Number of characters in dmm3

extern int dm4size Number of characters in dm4

extern int dmm4msize Number of characters in dmm4

extern int homosize Number of characters in homo

extern int homo2size Number of characters in homo2

extern int homo3size Number of characters in homo3

Table 39 Global PSG Variables

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 149

Imaging and Other Variables

extern int homo4size Number of characters in homo4

extern int hssize Number of characters in hs

Table 39 Global PSG Variables

Table 40 Imaging and Other Variables

RF Pulses

extern double p2 Pulse length

extern double p3 Pulse length

extern double p4 Pulse length

extern double p5 Pulse length

extern double pi Inversion pulse length

extern double psat Saturation pulse length

extern double pmt Magnetization transfer pulse length

extern double pwx X-nucleus pulse length

extern double pwx2 X-nucleus pulse length

extern double ps1 Spin-lock pulse length

extern char pwpat[MAXSTR] Pattern for pw, tpwr

extern char pw1pat[MAXSTR] Pattern for p1, tpwr1

extern char pw2pat[MAXSTR] Pattern for p2, tpwr2

extern char pw3pat[MAXSTR] Pattern for pw3, tpwr3

extern char pw4pat[MAXSTR] Pattern for pw4, tpwr4

extern char pw5pat[MAXSTR] Pattern for pw5, tpwr5

extern char pipat[MAXSTR] Pattern for pi, tpwri

extern char satpat[MAXSTR] Pattern for pw, tpwr

extern char mtpat[MAXSTR] Pattern for psat, satpat

extern char ps1pat[MAXSTR] Pattern for spin-lock

extern double tpwr1 Transmitter pulse power

extern double tpwr2 Transmitter pulse power

extern double tpwr3 Transmitter pulse power

extern double tpwr4 Transmitter pulse power

extern double tpwr5 Transmitter pulse power

150 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

extern double tpwri Inversion pulse power

extern double satpwr Saturation pulse power

extern double mtpwr Magnetization transfer pulse power

extern double pwxlvl pwx pulse level

extern double pwxlvl2 pwx2 power level

extern double tpwrs1 Spin-lock power level

Table 40 Imaging and Other Variables

RF Decoupler Pulses

extern char decpat[MAXSTR] Pattern for decoupler pulse

extern char decpat1[MAXSTR] Pattern for decoupler pulse

extern char decpat2[MAXSTR] Pattern for decoupler pulse

extern char decpat3[MAXSTR] Pattern for decoupler pulse

extern char decpat4[MAXSTR] Pattern for decoupler pulse

extern char decpat5[MAXSTR] Pattern for decoupler pulse

extern char dpwr1 Decoupler pulse power

extern char dpwr4 Decoupler pulse power

extern char dpwr5 Decoupler pulse power

Gradients

extern double gro, gro2, gro3 Readout gradient strength

extern double gpe, gpe2, gpe3 Phase encode for 2D, 3D, and 4D

extern double gss, gss2, gss3 Slice-select gradients

extern double gror Readout focus

extern double gssr Slice-select refocus

extern double grof Readout refocus fraction

extern double gssf Slice-select refocus fraction

extern double g0, g1,... g9 Numbered levels

extern double gx, gy, gz X, Y, and Z levels

extern double gvox1, gvox2, gvox3 Voxel selection

extern double gdiff Diffusion encode

extern double gflow Flow encode

extern double gspoil, gspoil2 Spoiler gradient levels

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 151

extern double gcrush, gcrush2 Crusher gradient levels

extern double gtrim, gtrim2 Trim gradient levels

extern double gramp, gramp2 Ramp gradient levels

extern double gpemult Shaped phase encode multiplier

extern double gradstepsz Positive steps in the gradient DAC

extern double gradunit Dimensional conversion factor

extern double gmax Maximum gradient value (G/cm)

extern double gxmax X maximum gradient value (G/cm)

extern double gymax Y maximum gradient value (G/cm)

extern double gzmax Z maximum gradient value (G/cm)

extern double gtotlimit Limit combined gradient values (G/cm)

extern double gxlimit Safety limit for X gradient (G/cm)

extern double gylimit Safety limit for Y gradient (G/cm)

extern double gzlimit Safety limit for Z gradient (G/cm)

extern double gxscale X scaling factor for gmax

extern double gyscale Y scaling factor for gmax

extern double gzscale Z scaling factor for gmax

extern char gpatup[MAXSTR] Gradient ramp-up pattern

extern char gpatdown[MAXSTR] Gradient ramp-down pattern

extern char gropat[MAXSTR] Readout gradient pattern

extern char gpepat[MAXSTR] Phase encode gradient pattern

extern char gsspat[MAXSTR] Slice gradient pattern

extern char gpat[MAXSTR] General gradient pattern

extern char gpat1[MAXSTR] General gradient pattern

extern char gpat2[MAXSTR] General gradient pattern

extern char gpat3[MAXSTR] General gradient pattern

extern char gpat4[MAXSTR] General gradient pattern

extern char gpat5[MAXSTR] General gradient pattern

Delays

extern double tr Repetition time per scan

extern double te Primary echo time

extern double ti Inversion time

152 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

extern double tm Mid-delay for STE

extern double at Acquisition time

extern double tpe, tpe2, tpe3 Phase encode durations for 2D to 4D

extern double tcrush Crusher gradient duration

extern double tdiff Diffusion encode duration

extern double tdelta Diffusion encode duration

extern double tDELTA Diffusion gradient separation

extern double tflow Flow encode duration

extern double tspoil Spoiler duration

extern double hold Physiological trigger hold off

extern double trise Gradient coil rise time: sec

extern double satdly Saturation time

extern double tau General use delay

extern double runtime User variable for total experiment time

Frequencies

extern double resto Reference frequency offset

extern double wsfrq Water suppression offset

extern double chessfrq Chemical shift selection offset

extern double satfrq Saturation offset

extern double mtfrq Magnetization transfer offset

Physical Sizes and Positions (for slices, voxels, and FOV)

extern double pro FOV position in readout

extern double ppe, ppe2, ppe3 FOV position in phase encode

extern double pos1, pos2, pos3 Voxel position

extern double pss[MAXSLICE] Slice position array

extern double lro Readout FOV

extern double lpe, lpe2, lpe3 Phase encode FOV

extern double lss Dimension of multislice range

extern double vox1, vox2, vox3 Voxel size

extern double thk Slice or slab thickness

extern double lpe, lpe2, lpe3 Phase encode FOV

extern double fovunit Dimensional conversion factor

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 153

extern double thkunit Dimensional conversion factor

Bandwidths

extern double sw1, sw2, sw3 Phase encode bandwidths / spectral widths

Counts and Flags

extern double nD Experiment dimensionality

extern double ns Number of slices

extern double ne Number of echoes

extern double ni Number of standard increments

extern double nv, nv2, nv3 Number phase encode views

extern double ssc Compressed ss transients

extern double ticks External trigger counter

extern char ir[MAXSTR] Inversion recovery flag

extern char ws[MAXSTR] Water suppression flag

extern char mt[MAXSTR] Magnetization flag

extern char pilot[MAXSTR] Auto gradient balance flag

extern char seqcon[MAXSTR] Acquisition loop control flag

extern char petable[MAXSTR] Name for phase encode table

extern char acqtype[MAXSTR] Example: "full" or "half" echo

extern char exptype[MAXSTR] Example: "se" or "fid" in CSI

extern char apptype[MAXSTR] Keyword for parameter init, e.g, "imaging"

extern char seqfile[MAXSTR] Pulse-sequence name

extern char rfspoil[MAXSTR] rf spoiling flag

extern char satmode[MAXSTR] Presentation mode

extern char verbose[MAXSTR] Verbose mode for sequences and psg

Miscellaneous

extern double rfphase rf phase shift

extern double B0 Static magnetic field level

extern double slcto Slice selection offset

extern double delto Slice spacing frequency

extern double tox Transmitter offset

extern double toy Transmitter offset

154 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

extern double toz Transmitter offset

extern double griserate Gradient rise rate

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 155

Pulse Sequence Output

This section describes how to program output in VnmrJ.

Output messages

The statements in Table 41 control the operation of the
pulse sequence at run- time and provide input output to the
VnmrJ interface or the Linux file system. It should be
emphasized that all C input/output occurs before the
acquisition of the first scan. You can use checkflag and ix
(described in the section Parameters and Variables) to
control the circumstances of input and output.

Any C function for input/output can be used to communicate
with the Linux file system, for example to open, close, and
read or write from files. The stdout designation for
statements such as fprintf or printf in pulse sequences is
the Text page of the Process tab of the VnmrJ interface.
Additional information about C can be obtained from a basic
C programming manual.

The statement psg_abort(1) aborts a pulse sequence at
run- time, before the first scan and causes a beep. The
argument is an internal error index, which is always 1 for
pulse sequences. Standard C commands to abort a program
have variable behavior in different versions of C and they
should no be used.

The statement abort_message(message,varnames) is similar
to psg_abort, but it outputs the string message to the error
window of VnmrJ, along with a beep. The argument message
should be the message contents, contained in double quotes
or be a pointer to a char array with the message.

Table 41 Statements that control run-time output

abort_message(message,varnames) Abort at run-time and send a message to error window.

printf(message,varnames) Print formatted text to the VNMRj Text page (C).

psg_abort(1) Abort the pulse sequence at run-time.

psg_abort(1) Abort the pulse sequence at run-time.

text_error(message,varnames) Print formatted text to the VnmrJ Text page.

text_message(message,varnames) Print formatted text to the VnmrJ Text page.

warn_message(message,varnames) Send a warning message to the error window

156 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

The statement warn_message(message,varnames) outputs a
string message to the error window of VnmrJ, along with a
beep. The argument message should be the message contents,
contained in double quotes or be a pointer to a char array
with the message.

The standard C statement printf written as
printf(message,varnames) writes formatted text to the
Text page of the Process tab of the VnmrJ interface without
a beep. The argument message is the message contents
contained in double quotes or be a pointer to a char array
with the message.

The statements abort_message and warn_message formats a
value of a C variable as a string in manner similar to the
standard C statement printf. Consult a basic C manual to
learn printf. The code below gives an example.

An abort condition or the condition for a warning might be
the result of an internal calculation in the pulse sequence,
such as a duty- cycle calculation, or it might be in response
to a parameter that is set incorrectly. The statements for a
warning or an abort are usually placed in a C conditional.
One might also write to the text window with a printf
statement. For example:

double duty = pw;

double totaltime = d1 + pw + rof2 + alfa + at;

if (dm[2]='y') {

 duty = duty + rof2 + alfa + at;

}

duty = duty/totaltime;

if (duty > 0.1) {

 printf("Abort: the dutycycle of %f\% is too
high!",duty*100);

 psg_abort(1);

}

would check the duty cycle of the observe transmitter and
decoupler together of a sequence such as s2pul.c and abort
if it was greater than 10% with a message to the text
window. One might replace the contents of the conditional
with:

abort_message("Abort: the dutycycle of %f\% is too
high!",duty*100);

or

warn_message("Abort: the dutycycle of %f\% is too
high!",duty*100");

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 157

Pulse sequence display

The Menu item, Display Sequence, in the Acquisition
pull- down executes the command dps, which provides a
display of the pulse sequence in a viewport of the VnmrJ
interface. The pulse - sequence statements in Table 42
control the output of this display.

The command dps runs the pulse sequence in a special
program to represent the pulse sequence in a viewport. The
immediate display represents the first increment along with
most of its input/output, including shape and waveform
calculations, as well as printed messages to the VnmrJ
interface.

The dps command does not recognize putCmd, putvalue,
putstring, and putarray.

The indexes that index the real- time variables v1 to v42,
constants, and real- time tables t1 to t60 are different for the
dps program. Calculations that manipulate these indexes
may cause the dps command to display incorrect phase- table
values.

Statements to control the DPS display

The dps_off, dps_on, dps_skip, and dps_show statements
can be inserted into a pulse sequence to control the
graphical display of the pulse- sequence statements by the
dps command.

To turn off the dps display of statements, insert dps_off()
into the sequence. All pulse sequence statements following
dps_off will not be shown.

To turn on the dps display of statements, insert dps_on()
into the sequence. All pulse- sequence statements following
dps_on will be shown.

To skip the dps display of the next statement, insert
dps_skip() into the sequence. The next pulse- sequence

Table 42 Statements to control the pulse-sequence display

dps_off() Turn off the pulse-sequence display for subsequent statements.

dps_on() Turn on the pulse-sequence display for subsequent statements.

dps_skip() Turn off the next pulse-sequence statement.

dps_show(options) Show a particular icon option in the display.

158 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

statement will not be displayed.

To draw pulses for dps display, insert dps_show(options)
statements into the pulse sequence. The pulses will appear
in the graphical display of the sequence.

The icon options to dps_show are described fully in its entry
in “PSG Variables” on page 145. These options include the
ability to draw a line to represent a delay, draw a pulse
picture and display the channel name below the picture,
draw shaped pulses with labels, draw obs and dec pulses at
the same time.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 159

Setting the Amplitude, Phase, and Gate from Tables

The statements vobspwrf, vdecpwrf, vdec2pwrf, vdec3pwrf,
and vdec4pwrf (Table 43) are used to set the fine power or
amplitude scan- to- scan or in a real time loop.

These statements take a real- time integer or table argument
vamp with values of 0 to 4095 to set the fine power or
amplitude. Note that real- time variables can have only
integer values, so these statements set the amplitude with
only 12- bit resolution.

Real- time amplitude statements can be used to create a
pulse shape or waveform from within a real- time loop. To
make a real- time shape, create an integer array containing
the shape, using getarray or through a calculation in the
pulsesequence function. Use settable to initialize a
real- time table with the values. The values can be accessed
as real- time variables in a loop with the gettable
statement. For example:

sub(v1,v1,v1); // initialize v1 to zero

loop(v2,v3); // initialize v2 with the number of steps

 gettable(t1,v1,v4); // get the v1th element of table t1

 // and set v4

 incr(v1); // increment v1

 vobspwrf(v4); // set the amplitude from v4

 delay(tau); // set tau to be the pulse-length divided

 // by steps

endloop(v3);

The statements

xmtrphase, dcplrphase, dcplr2phase, dcplr3phase, and
dcplr4phase (Table 9 on page 72) can be used to add phase
modulation to the shape.

You can gate the transmitter based on a real- time argument

Table 43 Statements to create and use real-time lists

vdecpwrf(vamp) Set the amplitude of the dec channel using a real-time integer.

vdec2pwrf(vamp) Set the amplitude of the dec2 channel using a real-time integer.

vdec3pwrf(vamp) Set the amplitude of the dec3 channel using a real-time integer.

vdec4pwrf(vamp) Set the amplitude of the dec4 channel using a real-time integer.

vobspwrf(vamp) Set the amplitude of the obs channel using a real-time integer.

160 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

by including the commands xmtron and xmtroff within a
real- time conditional. For example:

ifzero(v1);

 xmtroff();

elsnz(v1);

 xmtron();

endif(v1);

gates the transmitter on if v1 = 1 and off if v1 = 0.

Any other pair of gate commands can be used in this
manner.

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 161

Gradient Control for PFG and Imaging

A system for spectroscopy will usually provide one of several
different PFG gradient amplifiers to provide current to PFG
probes. These include the Performa single- axis amplifiers (1
to 4 and Diffusion) and a three- axis PerformaXYZ amplifier.
A gradient pulse is most- often used for coherence selection
or as a homospoil pulse. Gradients are also used to provide
spatial dispersion for gradient shimming or for microimaging
or diffusion experiments with a PFG probe. All of the
Performa amplifiers for PFG use a gradient controller in the
PFG slot of the acquisition card cage.

A system equipped for imaging uses a set of three L500
imaging amplifiers in a separate bay and a variety of
different probes for either horizontal or vertical- bore
magnets. Imaging hardware is controlled by an imaging
controller in the gradient slot of the card cage.

The shim coils can provide gradient pulses to any probe for
either homospoil or gradient shimming. Commands that
pulse the shim coils are executed through the master
controller.

Table 44 provides all the pulse- sequence statements that
control gradients, through PFG amplifiers, imaging
amplifiers, or the shims. In principle, all of these statements
can be used either with PFG or imaging hardware provided
that the appropriate number of axes are present, though
there may be some limitations for calculation- intensive
imaging sequences. Gradient shapes that are executed
through the PFG controller nominally execute at 25 ns for
DD2 MR systems and at 50 ns for VNMRS systems time
resolution of the RF system. Pulse sequences that use the
imaging controller to provide gradient shapes for imaging are
automatically limited to 4 s time resolution. It may be
necessary to unconfigure the imaging controller when
running some sequences for spectroscopy.

Table 44 Gradient control statements

create_rotation_list(name,angle_array,num_angles)

Create rotation list.

magradient(gradlvl)

Magic-angle gradient.

magradpulse(gradlvl,width)

162 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Magic-angle gradient pulse.

mashapedgradient(patttern,gradlvl,width,loops,wait)

Shaped magic-angle gradient pulse.

mashapedgradpulse(pattern,gradlvl,width)

Shaped magic-angle gradient pulse.

obl_gradient(gradlvl1,gradlvl2,gradlvl3)

Oblique gradient

obl_shapedgradient(pattern,width,gradlvl1,gradlvl2,gradlvl3,wait)

Oblique, shaped gradient, one pattern.

obl_shaped3gradient(pat1,pat2,pat3,gradlvl1,gradlv2,gradlv3,wait)

Oblique shaped gradient, three patterns.

pe_gradient(stat1,stat2,stat3,step2,vmult)

Oblique gradient, phase-encode one axis.

pe2_gradient(stat1,stat2,stat3,step2,step3,vmult2,vmult3)

Oblique gradient, phase-encode two axes.

pe3_gradient(stat1,stat2,stat3,step1,step2,step3,vmult1,vmult2,vmult3)

Oblique gradient, phase-encode three axes.

pe_shapedgradient(pattern,width,stat1,stat2,stat3,step2,vmult2,wait)

Oblique shaped gradient pulse, one pattern, phase-encode one axis.

pe_shape3dgradient(pat1,pat2,pat3,width,stat1,stat2,stat3,step2,vmult2,wait)

Oblique shaped gradient pulse, three patterns, phase-encode one axis.

pe2_shapedgradient(pattern,width,stat1,stat2,stat3,step2,step3,vmult2,vmult3,wait)

Oblique shaped gradient pulse, one pattern, phase-encode two axes.

pe2_shaped3gradient(pat1,pat2,pat3,width,stat1,stat2,stat3,step2,step3,vmult2,vmult3,wait)

Oblique shaped gradient pulse, three patterns, phase-encode two axes.

pe3_shapedgradient(pattern,width,stat1,stat2,stat3,step1,step2,step3,vmult1,vmult2,vmult3,wait)

Oblique shaped gradient pulse, one pattern, phase-encode three axes.

pe3_shaped3gradient(pat1,pat2,pat3,width,stat1,stat2,stat3,step1,step2,step3,vmult1,
vmult2,vmult3,wait)

Oblique shaped gradient pulse, three patterns, phase-encode three axes.

rgradient(axis,daclvl)

Set gradient level, any axis.

rot_angle(phi,theta,psi)

Table 44 Gradient control statements (continued)

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 163

Single-axis gradient control for spectroscopy

The statement rgradient(axis,daclvl)is commonly used to
set Z- axis gradient levels for systems with single axis
Performa amplifiers, for PFG or Diffusion. The argument
axis = 'z' or 'Z' and daclvl is a whole number with a
range from –32768 to +32767 for Performa amplifiers 2- 4
and the Performa D for high- gradient- strength diffusion. The
Performa 1 amplifier has a range from –4096 to +4095. A
daclvl of 0 produces no current.

A gradient pulse with daclvl = 1327.0 would use the
statements:

rgradient('Z',1327.0);

delay(width);

rgradient('Z',0.0);

in which width is the width of a gradient pulse.

The statement zgradpulse(1327.0,width)automatically
applies the above gradient pulse along the Z axis.

The rgradient statement can be used to set X and Y
gradients for systems with the PerformaXYZ amplifier or to
an imaging system, in which axis = 'x' or 'X' and 'y' or
'Y'. The rgradient statement can also be used to generate
homospoil pulses on X, Y, or Z by selecting the homospoil
option on the configuration page, if it is provided as an
option.

Set user gradient, oblique rotation angles.

rot_angle_list(listId,state,vindex)

Set gradient, oblique rotation angles from a list.

rotate()

Set gradient, oblique rotation angles.

shapedgradient(pattern,width,gradlvl,axis,loops,wait)

Shaped gradient pulse.

zero_all_gradients()

Zero all gradients.

zgradpulse(daclvl,width)

Z-axis gradient pulse.

Table 44 Gradient control statements (continued)

164 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

Use the gradalt parameter to reduce gradient recovery
artifacts by inverting the gradients on alternate scans.
gradalt acts as a multiplier for the gradient amplitude on
alternating scans.

The zgradpulse and rgradient pulse elements use the
value of gradalt to mutliply the gradient amplitude.

No changes are made if:

the local (curpar) parameter gradalt does not exist

the local (curpar) parameter gradalt is set to "Not Used"

the local (curpar) parameter gradalt is set to “1”

Examples:

• gradalt=1 Alternating scans will have gradient
amplitudes multiplied by 1; no changes are made.

• gradalt=-1 Alternating scans will have gradient
amplitudes multiplied by “- 1”.

• gradalt=-0.99 Alternating scans will have gradient
amplitudes multiplied by “- 0.99”.
Use this when positive and negative gradients are not
exactly the same.

• gradalt=0 Alternating scans will have gradient amplitude
multiplied by “0”.

• gradalt=2 Alternating scans will have gradient amplitude
multiplied by “2”.

• gradalt=-0.997,-0.998,-0.999,-1.0,-1.001,-1.002,
-1.003 Alternating scans will have gradient amplitudes
multipled by the listed numbers.
Use this to calibrate the negative gradient.

• gradalt=-1,1 Alternating scans will have gradient
amplitudes multipled by “- 1, 1”.
Use this to compare the effect of alternating gradients.

Pulse sequences can be coded to activate or deactivate
gradient alternation, independently of the gradalt parameter.
Adding the statement

gradalt = 1.0

will deactivate alternating gradients from following
zgradpulse or rgradient calls.

Adding the statement

gradalt = -1.0

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 165

will activate alternating gradients to follow zgradpulse or
rgradient calls. This mechanism also allows specific
gradients in a pulse sequence to either alternate gradients or
not. For example,

double gradaltorig;

gradaltorig = gradalt; /* remember the user
preference for gradalt */

gradalt= 1.0; /* defeat alternating
gradients for the following */

zgradpulse(gzlvl1,gt1);

gradalt= -1.0; /* force alternating
gradients for the following */

zgradpulse(gzlvl2,gt2);

gradalt= gradaltorig; /* return to user preference
for alternation for the following */

zgradpulse(gzlvl3,gt3);

Shaped gradients with nowait capability

The statement
shapedgradient(pattern,width,daclvl,axis,loops,wait)
can be used to deliver a gradient shape to the Z axis of a
Performa amplifier, one of the three axes of the Performa
XYZ amplifier or an imaging system. The argument pattern
is the root name of a text file with the extension .GRD in
the directory shapelib containing the elements of the shape.
The time width is in seconds, gradient level daclvl is set in
DAC units and axis can be 'x' or 'X', 'y' or 'Y', and 'z'
or 'Z'. The integer value loops is N = 1 to 255 and it allows
the pattern to execute multiple times with a total time of
N*width.

The string argument wait can have the values 'wait' or
'nowait'. If the value is 'nowait', instructions following
the shapedgradient statement are executed immediately. If
the value is 'wait', instructions following the statement are
executed after the completion of the gradient pulse. This
nowait capability allows you to execute shaped RF pulses
simultaneously with the gradient pulse. Most gradient
statements that execute a pattern have nowait capability.

Creating a gradient table

All gradient statements other than rgradient and

166 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

zgradpulse require gradient amplifiers for three axes, either
the Performa XYZ or hardware for imaging. All three- axis
gradient statements set the gradient level gradlvl in
Gauss/cm rather than DAC units and require the use of a
gradient calibration table to convert between DAC units and
Gauss/cm. This table is created with the macro
creategtable and it is stored in
/vnmr/imaging/gradtables. Consult the Command and
Parameter Reference for instructions in using creategtable.

Controlling magic angle gradients

The statement magradient(gradlvl) is used to set a

gradient along the magic angle (54.7o) using the X,Y, and Z
axes of the PerformaXYZ amplifier. The value of gradlvl is
entered in Gauss/cm and converted to DAC units using the
gradient table. The statement magradient(0.0) is used to
end a magic- angle gradient pulse after a delay.

The statement magradpulse(gradlvl,width) can be used to
apply a magic- angle gradient pulse with the time width, in
seconds.

The statement
mashapedgradient(pattern,gradlvl,width,loops,wait) is
used to deliver a gradient shape along the magic angle. The
value of gradlvl is entered in Gauss/cm and converted to
DAC units using the Gradient Table. The loops and wait
arguments are similar to those of shapedgradient.

The statement mashapedgradpulse(pattern,gradlvl,width)
is used to deliver a gradient shape along the magic angle
without looping and the nowait capability.

Oblique and phase-encoded-oblique gradients for imaging

The gradient statements labeled with obl_ and pe#_ in
Table 38 on page 142 are static and phase- encoded oblique
gradients that are used exclusively in imaging sequences. You
should consult the Guide to Imaging for a thorough
discussion of pulse- sequence programming with these
statements.

The three axes of an oblique gradient are logical axes that
are designated (1) read- out, (2) phase- encode, and (3)
slice- select. The orientation of the logical axes relative to the
physical X,Y, and Z axes is determined by three Euler angles
psi, theta, and phi that are represented internally as global
PSG variables. The rotate() statement is used to set the

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 167

gradient rotation software in the imaging controller with
these values. The statement rot_angle(psi,theta,phi) can
be used to set and apply the rotation angles in the pulse
sequence.

The statement obl_gradient(gradlvl1,gradlvl2,gradlvl3)
sets the gradient levels of the three logical axes and
obl_gradient(0.0,0.0,0.0) ends an oblique gradient pulse
after a delay. The gradlvl# arguments are set in Gauss/cm.

The statement
obl_shapedgradient(pattern,gradlvl1,gradlvl2,gradlvl
3,wait) delivers a shaped gradient pulse in which pattern
is the root name of a text file with a .GRD extension in
shapelib, to apply a gradient shape for all three logical
axes. The argument wait provides nowait capability.

The statement
obl_shaped3gradient(pat1,pat2,pat3,gradlvl1,gradlvl2
,gradlvl3, wait) delivers a shaped gradient pulse that
uses three different patterns, pat1, pat2, and pat3 for the
three logical axes. The argument wait provides nowait
capability.

The statements pe_gradient, pe2_gradient, and
pe3_gradient provide gradients that are phase- encoded
along one, two, and three axes. For these gradients, the
gradient levels consist of a static portion stat1, stat2, and
stat3 and a step size step1, step2, and step3 in Gauss/cm.
The arguments vmult1, vmult2, and vmult3 are real- time
indexes for the steps.

The statements pe_shapedgradient, pe2_shapedgradient,
and pe3_shapedgradient deliver phase- encoded gradients
with a single pattern for all three axes. The statements
pe_shaped3gradient, pe2_shaped3gradient, and
pe3_shaped3gradient deliver phase- encoded gradients that
use three different patterns for the three axes. All of the
phase- encoded shaped gradients have nowait capability,
using the argument wait.

Controlling slice-selective RF shaped pulses for imaging

The statements in Table 45 on page 169 are used to provide
frequency- offset shaped pulses to selectively excite positions
in imaging experiments. The offset for an individual position
is determined from the gradient level and a distance in cm.
An offset is combined with a pattern to produce a selective
phase- ramped, frequency- offset pulse that excites the
position. A typical imaging experiment makes use of a list of

168 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

these pulses. For more information about the programming
of slice–selective pulses, consult the Guide to Imaging.

The statement poffset(pos,gradlvl) returns a single
frequency offset in Hz for the observe channel that depends
upon a position pos in cm and a gradient level gradlvl in
Gauss/cm. This statement automatically takes into account a
global PSG variable resto, which should contain the spectral
offset of the resonance of interest in Hz.

The statement
shapedpulseoffset(pattern,width,phase,rof1,rof2,offs
et) applies a shaped RF pulse with a frequency offset
created by phase ramping, in which pattern is the root
name of a text file in shapelib with a .RF extension and
offset is the frequency offset in Hz. The argument width is
the pulse width and rof1 and rof2 are the predelay and
postdelay. The argument offset can be the value returned
from the statement poffset. The pattern file for the offset
shape is executed directly in the RF controller and is not
written into shapelib.

The statement
offsetlist(posarray,gradlvl,resfrq,offsetarray,ns,st
ate) returns an array of offsets offsetarray in Hz based
upon an array of positions posarray in cm and a single
gradient level gradlvl. The integer ns is the number of
offsets. The string argument state is supplied from the
global PSG variable seqcon that determines whether the
offsets will be supplied in a compressed 'c' or a standard
's' loop. See the previous discussion of peloop and msloop
in this chapter. The argument resfrq is the spectral offset
of the resonance of interest. The statement offsetglist is
similar, but it accepts an array of gradient levels
gradlvlarray as well as positions.

The statement
shapelist(pattern,width,offsetarray,ns,state) creates
a list of phase- ramped, offset , shaped RF pulses using the
argument pattern, for the shape and an array of offsets
offsetarray. The argument width is the pulse width in
seconds, the integer ns is the number of shapes, and state
should be the same as that used for offsetlist. The
statement shapelist returns an integer listId to identify
the list of shapes. The patterns files for the offset shapes are
executed directly in the RF controllers and are not written
into shapelib.

The statement
shapedpulselist(listId,width,phase,rof1,rof2,state,i

Pulse-Sequence Programming 2

VnmrJ 4 User Programming 169

ndex) is used to apply offset, shaped pulses from the list
generated by shapelist. The first argument listId is an
integer designating the list returned by shapelist. The
argument width is the pulse width and rof1 and rof2 are
the predelay and postdelay. The argument state should be
the same as that of shapelist, and state determines index.
The index should be a real- time variable if the list is to be
executed in compressed mode and and it should be an
integer 1 if the list is to be executed in standard mode.

Controlling lock field correction

Table 45 Statements for slice-selective shaped pulses

offsetlist(posarray,gradlvl,resfrq,offsetarray,ns,state))

Create offset from position array.

offsetglist(posarray,gradarray,resfrq,offsetarray,ns,state)

Create offset array from position and gradient-level array.

offset=poffset(pos,gradlvl)

Return offset for observe channel from position.

poffset_list(posarray,gradlvl,ns,apv1)

Set observe-channel offsets from position array.

position_offset(pos,gradlvl,resfrq,device)

Set offset of device from position and resonance offset.

position_offset_list(posarray,gradlvl,ns,resfrq,device,
listId,apv1

Set offsets of device from position array and resonance offset.

shapedpulselist(listId,width,phase,rof1,rof2,state,index)

Apply phase-ramped shaped pulses from a pre-computed list.

shapedpulseoffset(pattern,width,phase,rof1,rof2,offset)

Apply a phase-ramped shaped pulse with an offset.

listId=shapelist(pattern,width,offsetarray,ns,state)

Create phase-ramped shaped pulses from a pattern and offset array.

width=shapelistpw(pattern,width)

Return exact width of shaped pulse with offset.

Table 46 Statements for controlling lock field correction

lk_hold() Set lock to hold correction.

lk_sample() Set lock to sample lock signal.

170 VnmrJ 4 User Programming

2 Pulse-Sequence Programming

The statements lk_sample and lk_hold (Table 46) control
the lock field- correction circuitry. Use lk_hold to disable
the field correction circuitry of the lock channel during

gradient pulses or during RF pulses at the 2H lock
frequency, which can disturb the lock level. Resume field
correction with lk_sample after the disturbance is complete

171

Agilent VnmrJ 4 User Programming
Reference Guide

Agilent Technologies

3
Pulse Sequence Statement Reference

Pulse Sequence Statements 172

This chapter contains a reference to the statements used in
programming VnmrJ pulse sequences.

172 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Pulse Sequence Statements

abort_message Abort PSG at run-time and send message to VnmrJ
acquire Acquire data explicitly
add Add real-time integer values
acquire_obs Acquire data explicitly in parallel section
acquire_rcvr Acquire data explicitly in parallel section
assign Assign real-time integer value using real-time integer
clearapdatatable Zero all data in digital receiver memory
create_angle_list Create real-time list of gradient coordinate rotation angles
create_offset_list
create_rotation_list Create list of gradient-coordinate rotation angles
dbl Double real-time integer value
dcplrphase Set small-angle phase of first decoupler
dcplr2phase Set small-angle phase of second decoupler
dcplr3phase Set small-angle phase of third decoupler
dcplr4phase Set small-angle phase of fourth decoupler
decblank Blank amplifier of first decoupler
dec2blank Blank amplifier of second decoupler
dec3blank Blank amplifier of third decoupler
dec4blank Blank amplifier of fourth decoupler
decoff Turn off first decoupler
dec2off Turn off second decoupler
dec3off Turn off third decoupler
dec4off Turn off fourth decoupler
decoffset Set frequency offset of first decoupler
dec2offset Set frequency offset of second decoupler
dec3offset Set frequency offset of third decoupler
dec4offset Set frequency offset of fourth decoupler
decon Turn on first decoupler
dec2on Turn on second decoupler
dec3on Turn on third decoupler
dec4on Turn on fourth decoupler
decphase Set quadrature phase of first decoupler
dec2phase Set quadrature phase of second decoupler
dec3phase Set quadrature phase of third decoupler
dec4phase Set quadrature phase of fourth decoupler
decpower Set power level of first decoupler
dec2power Set power level of second decoupler
dec3power Set power level of third decoupler
dec4power Set power level of fourth decoupler
decprgoff End waveform decoupling on first decoupler
dec2prgoff End waveform decoupling on second decoupler
dec3prgoff End waveform decoupling on third decoupler
dec4prgoff End waveform decoupling on fourth decoupler
decprgon Start waveform decoupling on first decoupler
dec2prgon Start waveform decoupling on second decoupler
dec3prgon Start waveform decoupling on third decoupler
dec4prgon Start waveform decoupling on fourth decoupler
decprgonOffset Start waveform decoupling on first decoupler with offset
dec2prgonOffset Start waveform decoupling on second decoupler with offset
dec3prgonOffset Start waveform decoupling on third decoupler with offset
dec4prgonOffset Start waveform decoupling on fourth decoupler with offset
decpulse Perform pulse with assigned values on first decoupler
decpwrf Set fine power level of first decoupler
dec2pwrf Set fine power level of second decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 173

dec3pwrf Set fine power level of third decoupler
dec4pwrf Set fine power level of fourth decoupler
decr Decrement real-time integer value
decrgpulse Perform pulse on first decoupler
dec2rgpulse Perform pulse on second decoupler
dec3rgpulse Perform pulse on third decoupler
dec4rgpulse Perform pulse on fourth decoupler
decshaped_pulse Perform shaped pulse on first decoupler
dec2shaped_pulse Perform shaped pulse on second decoupler
dec3shaped_pulse Perform shaped pulse on third decoupler
dec4shaped_pulse Perform shaped pulse on fourth decoupler
decspinlock Perform waveform spinlock on first decoupler
dec2spinlock Perform waveform spinlock on second decoupler
dec3spinlock Perform waveform spinlock on third decoupler
dec4spinlock Perform waveform spinlock on fourth decoupler
decstepsize Set small-angle phase stepsize for first decoupler
dec2stepsize Set small-angle phase stepsize for second decoupler
dec3stepsize Set small-angle phase stepsize for third decoupler
dec4stepsize Set small-angle phase stepsize for fourth decoupler
decunblank Unblank amplifier of first decoupler
dec2unblank Unblank amplifier of second decoupler
dec3unblank Unblank amplifier of third decoupler
dec4unblank Unblank amplifier of fourth decoupler
delay Execute time delay
divn Divide real-time integer values
dps_off Turn off graphical display of statements
dps_on Turn on graphical display of statements
dps_show Display pulse and delay icons in graphical display
dps_skip Skip graphical display of next statement
elsenz Execute real-time else statement
endhardloop End hardware loop
endacq End explicit acquisition
endacq_obs End explicit acquisition in parallel section
endacq_rcvr End explicit acquisition in parallel section
endif Execute real-time endif statement
endloop End real-time loop
endmsloop End switchable multislice loop
endpeloop End switchable phase-encode loop
exe_grad_rotation Set oblique gradient-coordinate rotation angles in real-time
F_initval Always assign real-time integer value using numeric value
getarray Obtain all values from arrayed parameter
getelem Assign real-time interger using table element
getgradpowerintegral get gradient power integral for X, Y and Z axes
getorientation Read image-plane orientation
getstr Obtain value of string parameter
getval Obtain value of numeric parameter
hlv Assign half the value of real-time integer
hsdelay Execute time delay with optional homospoil pulse
ifrtGE Execute real-time greater-than-or-equal
ifrtGT Execute real-time greater-than
ifrtLE Execute real-time less-than-or-equal
ifrtLT Execute real-time less-than
ifrtEQ Execute real-time equal
ifrtNEQ Execute real-time not-equal
ifzero Execute real-time equal-zero
incr Increment real-time integer value

174 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

init_decpattern Create pattern file for waverform decoupling
init_gradpattern Create pattern file for gradient shape
init_rfpattern Create pattern file for shaped pulse
initval Assign real-time integer value using numeric value
kzendloop End real-time loop with fixed duration
kzloop Start real-time loop with fixed duration
lk_hold Set lock correction circuitry to hold correction
lk_sample Set lock correction circuitry to sample lock signal
loadtable Assign table elements from table text file
loop Start real-time loop
loop_check Check number of FIDs for compressed acquisition.
magradient Set three-axis gradient at magic angle
magradpulse Perform three-axis gradient pulse at magic angle
mashapedgradient Perform three-axis gradient shape at magic angle
mashapedgradpulse Perform three-axis shaped gradient pulse at magic angle
mod2 Assign real-time integer value modulo 2
mod4 Assign real-time integer value modulo 4
modn Assign real-time integer value modulo n
msloop Start switchable multislice loop
mult Multiply real-time integer values
obl_gradient Set three-axis oblique gradient
obl_shapedgradient Perform three-axis oblique gradient shape, single pattern
obl_shaped3gradient Perform three-axis oblique gradient shape, three patterns
obsblank Blank amplifier of observe channel
obsoffset Set frequency offset of observe channel
obspower Set power level of observe channel
obsprgoff End waveform decoupling on observe channel
obsprgon Start waveform decoupling on observe channel
obspulse Perform pulse with assigned values on observe channel
obspwrf Set fine power level of observe channel
obsstepsize Set small-angle phase stepsize of observe channel
obsunblank Unblank amplifier of observe channel
offset Set frequency offset of any channel
offsetglist Create offset array from position and gradient-amplitude array
offsetlist Create offset array from position and gradient-amplitude
parallelacquire_obs Acquire data explicitly in parallel section
parallelacquire_rcvr Acquire data explicitly in parallel section
parallelend End parallel section of pulse sequence
parallelstart Start parallel section of pulse sequence
parallelsync Position parallel synchronization delays
pe_gradient Set oblique gradient, phase encode one axis
pe2_gradient Set oblique gradient, phase encode two axes
pe3_gradient Set oblique gradient, phase encode three axes
pe_shapedgradient Perform oblique gradient shape, one pattern, phase encode one axis
pe_shaped3gradient Perform oblique gradient shape, three patterns, phase encode one axis
pe2_shapedgradient Perform oblique gradient shape, one pattern, phase encode two axes
pe2_shaped3gradient Perform oblique gradient shape, three patterns, phase encode two axis
pe3_shapedgradient Perform oblique gradient shape, one pattern, phase encode three axes
pe3_shaped3gradient Perform oblique gradient shape, three patterns, phase encode three axes
peloop Start switchable phase-encode loop
phase_encode3_gradient Set general oblique gradient, phase encode three axes
phase_encode3_gradpulse Perform general oblique gradient pulse, phase encode three axes
phase_encode3_oblshapedgradie
nt

Perform general oblique shaped gradient, phase encode three axes

poffset Return frequency offset based on position
poffset_list Create offset array from position array
position_offset Return frequency offset based on position

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 175

position_offset_list Create offset array from position array
psg_abort Abort PSG process at run-time
pulse Perform pulse with assigned values on observe channel
putarray Set all values of arrayed parameter from pulse sequence
putCmd Send command to VnmrJ from pulse sequence
putstring Set string parameter from pulse sequence
putvalue Set numeric value from pulse sequence
rcvroff Turn off receiver and unblank observe amplifier
rcvron Turn on receiver and blank observe amplifier
readMRIUserByte Read MRI user byte on MRI User Panel
recoff Turn off receiver gate
recon Turn on receiver gate
rcvrphase Set small-angle phase of receivers
rcvrstepsize Set small-angle phase stepsize of receivers
rgpulse Perform pulse on observe channel
rgradient Set DAC level of any one gradient axis
rlloop Start real-time loop with fixed count
rlpower Set power level of any channel
rlpwrf Set fine power level of any channel
rot_angle Set user-defined oblique gradient-coordinate rotation angles
rot_angle_list Set oblique gradient-coordinate rotation angles from list
rotate Set standard oblique gradient-coordinate rotation angles
rotorperiod Obtain period of external tachometer signal
rotorsync Execute time delay based on external tachometer signal
sample Acquire data explicitly during time delay
setacqmode Set windowed acquisition for explicit sampling
set_angle_list Select angle from 1D real-time list
setMRIUserGates Set all three gates of MRI User Panel
setreceiver Set quadrature receiver phase from table
setstatus Set decoupler status of any channel
settable Assign integer array to table
shapedpulse Perform shaped pulse on observe channel
shaped_pulse Perform shaped pulse on observe channel
shapedgradient Perform shaped gradient pulse on any one axis
shapelist Create pulse-shape list from base pattern and offset array
shapedpulselist Perform shaped pulses from shape list on observe channel
shapedpulseoffset Perform shaped pulse on observe channel with offset
shapelistpw Return exact pulse width of shaped-pulse pattern
simpulse Perform simultaneous pulses, observe, and first decoupler
sim3pulse Perform simultaneous pulses, observe, first, and second decouplers
sim4pulse Perform simultaneous pulses, observe, first, second, and third decouplers
simshaped_pulse Perform simultaneous shaped pulses, observe, and first decoupler
sim3shaped_pulse Perform simultaneous shaped pulses, observe, first, and second decouplers
sim4sahped_pulse Perform simultaneous shaped pulses, observe, first, second, and third

decouplers
sp#off Turn off spare line (#=1,2, or 3)
sp#on Turn on spare line (#=1,2, or 3)
spinlock Perform waveform spinlock on observe channel
starthardloop Start hardware loop
startacq Initialize explicit acquisition
startacq_obs Initialize explicit acquisition in parallel section
startacq_rcvr Initialize explicit acquisition in parallel section
status Set status of decoupler and homospoil
statusdelay Execute status statement within time delay
stepsize Set small-angle phase stepsize of any channel
sub Subtract real-time integer values

176 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

swift_acquire Execute SWIFT rf pulses and gated acquire pulse train
text_error Send error message to VnmrJ
text_message Send message to VnmrJ
triggerSelect Select trigger input on MRI User Panel
tsadd Add integer to table elements
tsdiv Divide integer into table elements
tsmult Multiply integer with table elements
tssub Subtract integer from table elements
ttadd Add table to second table
ttdiv Divide table into second table
ttmult Multiply table by second table
ttsub Subtract table from second table
txphase Set quadrature phase of observe channel
userDECshape Create waveform pattern directly, with interpolation
var_active Check if parameter is used
vdecpwrf Set fine power level of first decoupler in real-time
vdecpwrfstepsize Set step size for real-time fine power of first decoupler
vdec2pwrf Set fine power level of second decoupler in real-time
vdec3pwrfstepsize Set step size for real-time fine power of second decoupler
vdec3pwrf Set fine power level of third decoupler in real-time
vdec4pwrfstepsize Set step size for real-time fine power of third decoupler
vdec4pwrf Set fine power level of fourth decoupler in real-time
vdec4pwrfstepsize Set step size for real-time fine power of fourth decoupler
vdelay Execute time delay with fixed timebase and real-time count
vdelay_list Get delay value from delay list with real- time index
vobspwrf Set fine power level of observe channel in real-time
vobspwrfstepsize Set step size for real-time fine power of observe channel
warn_message Send warning message to VnmrJ
writeMRIUserByte Set user byte on MRI User Panel
xgate Gate pulse sequence from external tachometer signal
xmtroff Turn off observe channel
xmtron Turn on observe channel
xmtrphase Set small-angle phase of observe channel
zero_all_gradients Zero gradient DAC level for all axes
zgradpulse Perform gradient pulse on z axis

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 177

A

abort_message Abort PSG at run-time and send message to VnmrJ

Syntax: abort_message(message, varnames)
char *message /* a formatted string
containing the message */
varnames /* char, int, or doubles,
used in message */

Description: Abort the PSG process at run- time, send a
formatted warning message to VnmrJ, and cause a
beep. The formatting is similar to the C printf
statement.

acquire Aquire data explicitly

Syntax: acquire(points,dwell)
double points; /* number of points to acquire
*/
double dwell; /* dwell time, seconds */

Description: The acquire statement is an alias of the sample
statement for VNMRS. The construction
acquire(points,dwell) executes the statement
sample(time) in which time= points*dwell/2.0.
The individual arguments have no independent
significance other than to form the product time.

For VNMRS, the sample statement acquires data
points using the digital receiver with a 12.5 ns dwell
time (80 MHz rate) for a duration of time, in
seconds. The data points are automatically
downsampled with calculation of digital filters to
produce a set of complex points with a dwell time
of 1.0/sw.

For Unity- series systems, the acquire statement
explcitily controls the digitizer of the receiver. The
value points is the number of sample points, real
and imaginary, to obtain and dwell is the time
between sample points.

abort_message Abort PSG at run-time and send message to VnmrJ
acquire Acquire data explicitly
acquire_obs Acquire data explicitly in parallel section
acquire_rcvr Acquire data explicitly in parallel section
add Add real-time integer values
assign Assign real-time integer value using real-time integer

Related: psg_abort Abort PSG Process
text_error Send error message to VnmrJ
text_message Send message to VnmrJ
warn_message Send warning message to VnmrJ

178 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

The construction acquire(np,1.0/sw) is identical
to sample(np/(2.0*sw) and is compatible with both
VNMRS and Unity- series systems.

Arguments: points*dwell is the duration, in seconds, of the
sampling interval. Note that points is a double. For
example, the construction acquire(2,0.2e-6) will
cause an error; it should be acquire(2.0,0.2e-6).

acquire_obs Acquire data explicitly in parallel section

Syntax: acquire_obs(points,dwell)

double points; /* number of points
(complex pairs) to acquire */

double dwell; /* dwell time, seconds */

Description: Analogous to the acquire statement but to be used
in "obs" parallel sections of a pulse sequence.

acquire_rcvr Acquire data explicitly in parallel section

Syntax: acquire_rcvr(points,dwell)

double points; /* number of points
(complex pairs) to acquire */

double dwell; /* dwell time, seconds */

Related: endacq End explicit acquisition
rcvroff Turn on receiver and unblank

observe amplifier
rcvron Turn off receiver and blank observe

amplifier
sample Acquire data explicitly during time

delay
startacq Initialize explicit acquisition

Related: acquire_rcvr Acquire data explicitly in
parallel section

startacq_obs Initialize explicit
acquisition in parallel
section

startacq_rcvr Initialize explicit
acquisition in parallel
section

endacq_obs End explicit acquisition
in parallel section

endacq_rcvr End explicit acquisition
in parallel section

parallelacquire_obs Acquire data explicitly in
parallel section

parallelacquire_rcvr Acquire data explicitly in
parallel section

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 179

Description: Analogous to the acquire statement but to be used
in "rcvr" parallel sections of a pulse sequence.

add Add real-time integer values

Syntax: add(vi,vj,vk)
codeint vi; /* real-time variable for
addend */
codeint vj; /* real-time variable for
addend */
codeint vk; /* real-time variable for sum
*/

Description: Set the value of vk equal to the sum of integer
values of vi and vj.

Arguments: vi contains the integer value of the addend, vj
contains the integer value of the addend, and vk
contains the resulting sum. Each argument must be
a real- time variable (v1 to v42, oph, etc).

Examples: add(v1,v2,v3);

Related: acquire_obs Acquire data explicitly in
parallel section

startacq_obs Initialize explicit
acquisition in parallel
section

startacq_rcvr Initialize explicit
acquisition in parallel
section

endacq_obs End explicit acquisition
in parallel section

endacq_rcvr End explicit acquisition
in parallel section

parallelacquire_obs Acquire data explicitly in
parallel section

parallelacquire_rcvr Acquire data explicitly in
parallel section

Related: assign Assign real- time integer value using
real- time integerL

dbl Double real- time integer value
decr Decrement real- time integer value
divn Divide real- time integer values
hlv Assign half the value of real- time

integer
incr Increment real- time integer value
initval Assign real- time integer value using

numeric value
mod2 Assign real- time integer value modulo

2
mod4 Assign real- time integer value modulo

4

180 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

assign Assign real-time integer using real-time integer

Syntax: Syntax:assign(vi,vj)
codeint vi; /* real-time variable for input
*/
codeint vj; /* real-time variable to be
assigned */

Description: Set the value of vj equal to the integer value of vi.

Arguments: vi contains the value to be assigned and vj
contains the resulting assignment. Each argument
must be a real- time variable (v1 to v42, oph, etc).

Examples: assign(v3,v2);

modn Assign real- time integer value modulo
n

mult Multiply real- time integer values
sub Subtract real- time integer values

Related: add Add real- time integer values
dbl Double real- time integer value
decr Decrement real- time integer value
divn Divide real- time integer values
hlv Assign half the value of real- time

integer
incr Increment real- time integer value
initval Assign real- time integer value using

numeric value
mod2 Assign real- time integer value modulo

2
mod4 Assign real- time integer value modulo

4
modn Assign real- time integer value modulo

n
mult Multiply real- time integer values
sub Subtract real- time integer values

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 181

C

clearapdatatable Zero all data in digital receiver memory

Syntax: clearapdatatable()

Description: Zero the acquired data table. The data table is
automatically zeroed at the start of the execution of
a pulse sequence.

create_angle_list Create 1D real-time list of angles

Syntax: listId=create_rotation_list(name,
angle_array, num_angles);
char name; /* name of the rotation list */
double *angle_array[3]; /* 1D angle-list
array */
int num_angles; /* number of angles in array
*/
int listId; /* integer label of list */

Description: Create a 1D list of angles, identified by the integer
listId, to set one of the values psi, theta, and
phi for oblique gradients. The gradient rotation
angles rotate from the logical gradient axes read,
phase, and slice to the gradient axes X, Y and Z.
The input argument angle_array is a
one- dimensional array of doubles, to be used as
angles, with a dimension of num_angles.

A list created by create_angle_list is used by
set_angle_list to set one of the three oblique
rotation angles in either real- time, compressed
mode, or at run- time for use in an array. In
contrast, a list created by create_rotation_list
sets all three oblique rotation angles, but can only
be used at run- time.

Arguments: name is a string variable that sets the name of the
list of angles

angle_array is a 1D array to hold one of the Euler
rotation angles psi, theta, or phi, and has as
many rows as the number of angles in the list. The
declaration angle_array[128] creates an array to
hold 128 values for one angle.

num_angles is an integer specifying the number of
angles in the array.

The return listId is an integer identifying the
rotation list. The first list is identified as 0, the

clearapdatatable Zero all data in digital receiver memory
create_angle_list Create real-time list of gradient-coordinate rotation angles
create delay list Create table of delays
create offset list Create table of frequency offsets
create_rotation_list Create list of gradient-coordinate rotation angles

182 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

second 1, etc. listId is an argument to the
set_angle_list statement.

create_delay_list Create table of delays

Applicability: Direct Drive systems.

Syntax: list_number =
create_delay_list(list,nvals)

double *list; /* pointer to list of
delays */
int nvals; /* number of values in
list */
int list_number; /* integer for list
number return value */

Description: Creates a global list of delays that can be accessed
with a real- time variable or table element for
dynamic setting in pulse sequences. There can be a
maximum of 256 lists, depending on the size of the
lists. The lists are stored in data memory and
compete for space with the acquisition data for
each array element. If a list is created, the return
value is the number of the list (0 to 255); if an error
occurs, the return value is negative.
create_delay_list creates what is called a global list.
Global lists are different from AP tables in that the
lists are sent down to the acquisition console when
the experiment starts up and are accessible until
the experiment completes. In working with arrayed
experiments, a list is created for every array

Related: exe_grad_rotation Set oblique
gradient- coordinate
rotation angles in
real- time

create_angle_list Create 1D real- time list
of angles

create_rotation_list Create list of oblique
gradient- coordinate
rotation angles

rot_angle Set user- defined oblique
gradient- coordinate
rotation angles

rot_angle_list Set oblique
gradient- coordinate
rotation angles from a list

rotate Set standard oblique
gradient- coordinate
rotation angles

set_angle_list Select angle from a 1D
real- time list

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 183

element (including implicit 2D cases using the ni
parameter) unless care is taken to call the function
only for the first array element (see example below).
To read in an array of values, use the getarray
statement. To ensure that the list is only created
once, check the global array counter variable ix, and
only call create_delay_list to create the list when it
equals 1 (as shown in the example).

Arguments: list_number is an integer return value identifying the
newly created list.

nvals is the number of values in the list.

list a C array of delays

Examples: pulsesequence()? {?

 /* Declare static to save between calls
*/?
 static int list1;?
 int i, nvals;?
 double delay1[1024];? ?
 nvals = 1024;?
 if (ix == 1) {?
 for (i=0; i<nvals; i++) {?
 ... /* Initialize delay1 array
*/?
 }?
 list1 =
create_delay_list(delay1,nvals); ?
 }? ...
 vdelay_list(delay1,v5); /* v5 is the
real time index into the delay1 list */
}

Related
Statements

create_offset_list Create table of frequency offsets

Applicability: UNITYINOVA systems.

Syntax: create_freq_list(list,nvals,device,list_number)

create_freq_list Create table of frequencies
create_offset_list Create table of frequency offsets
delay Delay for a specified time
getarray Retrieves all values of an arrayed

parameter
vdelay Real- time delay
vdelay_list Select delay from table based on real- time

index

184 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

create_offset_list(list,nvals,device,list_nu

mber)

double *list; /* pointer to list of
frequency offsets */

int nvals; /* number of values in list
*/

int device; /* OBSch, DECch, DEC2ch, or
DEC3ch */

int list_number; /* number 0–255 for each
list */

Description: Stores global lists of frequencies that can be
accessed with a real- time variable or table element
for dynamic setting of frequency offsets. Offset lists
define lists of frequency offsets in Hz (such as from
tof, dof). Imaging pulse sequences typically use
offset lists, not frequency lists. The lists need to be
created in order starting from 0 using the
list_number argument, or by setting the
list_number argument to –1, which makes the
software allocate and create the next free list and
give the list number as a return value. Each list
must have a unique and sequential list_number.
There can be a maximum of 256 lists depending on
the size of the lists. The lists are stored in data
memory and compete for space with the acquisition
data for each array element. If a list is created, the
return value is the number of the list (0 to 255); if
an error occurs, the return value is negative.

create_offset_list creates what is called a global
list. Global lists are different from AP tables in that
the lists are sent down to the acquisition console
when the experiment starts up and are accessible
until the experiment completes. In working with
arrayed experiments, be careful when using a –1 in
the list_number argument because a list will be
created for each array element. In this case, a list
parameter can be created as an arrayed parameter
with protection bit 8 (256) set. To read in the values
of this type of parameter, use the getarray
statement. To ensure that the list is only created
once, check the global array counter variable ix,
and only call create_offset_list to create the list
when it equals 1. An example is shown in the entry
for the create_delay_list statement.

Arguments: list is a pointer to a list of frequency offsets.

nvals is the number of values in the list.

device is OBSch (observe transmitter), DECch (first
decoupler), DEC2ch (second decoupler), or DEC3ch
(third decoupler).

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 185

list_number is –1 or a unique number from 0 to
255 for each list created.

Examples: See the example for the create_delay_list
statement.

Related
statements

create_rotation_list Create list of gradient-coordinate rotation
angles

Syntax: listId=create_rotation_list(name,
angle_array, num_angles);
char name; /* name of the rotation
list */
double *angle_array[3]; /* 2D angle-list
array with 3 columns */
int num_angles; /* number of angle
sets in array */
int listId;/* return value is an integer, the
ID of the list created */

Description: Create a list of oblique gradient rotation angles,
identified by the integer listId, to set the values
of psi, theta, and phi for oblique gradients. The
gradient rotation angles rotate from the logical
gradient axes read, phase, and slice to the
gradient axes X, Y and Z. The input argument
angle_array is a two- dimensional array of doubles
whose three columns are psi, theta, and phi,
respectively and whose rows are the number of
rotation- angle sets.

Arguments: name is a string variable that sets the name of the
list of angles

angle_array is a 2D array with three columns to
hold the Euler rotation angle psi, theta, and phi,
and as many rows as the number of angles in the
list. The declaration angle_array[128][3] creates
an array to hold 128 sets of three angles.

num_angles is an integer specifying the number of
sets of rotation angle in the array.

create_delay_list Create table of delays
create_freq_list Create table of frequencies
getarray Retrieves all values of an arrayed

parameter
delay Delay for a specified time
voffset Select frequency offset from table

186 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

The return listId is an integer identifying the
rotation list. The first list is identified as 0, the
second 1, etc. listId is an argument to the
rot_angle_list statement.

Related: rotate Set standard oblique
gradient- coordinate rotation
angles

rot_angle Set user- defined oblique
gradient- coordinate rotation
angles

rot_angle_list Set gradient- coordinate rotation
angles from a list

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 187

D

dbl Double real-time integer value
dcplrphase Set small-angle phase of first decoupler
dcplr2phase Set small-angle phase of second decoupler
dcplr3phase Set small-angle phase of third decoupler
dcplr4phase Set small-angle phase of fourth decoupler
decblank Blank amplifier of first decoupler
dec2blank Blank amplifier of second decoupler
dec3blank Blank amplifier of third decoupler
dec4blank Blank amplifier of fourth decoupler
decoff Turn off first decoupler
dec2off Turn off second decoupler
dec3off Turn off third decoupler
dec4off Turn off fourth decoupler
decoffset Set frequency offset of first decoupler
dec2offset Set frequency offset of second decoupler
dec3offset Set frequency offset of third decoupler
dec4offset Set frequency offset of fourth decoupler
decon Turn on first decoupler
dec2on Turn on second decoupler
dec3on Turn on third decoupler
dec4on Turn on fourth decoupler
decphase Set quadrature phase of first decoupler
dec2phase Set quadrature phase of second decoupler
dec3phase Set quadrature phase of third decoupler
dec4phase Set quadrature phase of fourth decoupler
decpower Set power level of first decoupler
dec2power Set power level of second decoupler
dec3power Set power level of third decoupler
dec4power Set power level of fourth decoupler
decprgoff End waveform decoupling on first decoupler
dec2prgoff End waveform decoupling on second decoupler
dec3prgoff End waveform decoupling on third decoupler
dec4prgoff End waveform decoupling on fourth decoupler
decprgon Start waveform decoupling on first decoupler
dec2prgon Start waveform decoupling on second decoupler
dec3prgon Start waveform decoupling on third decoupler
dec4prgon Start waveform decoupling on fourth decoupler
decprgonOffset Start waveform decoupling on first decoupler with offset
dec2prgonOffset Start waveform decoupling on second decoupler with offset
dec3prgonOffset Start waveform decoupling on third decoupler with offset
dec4prgonOffset Start waveform decoupling on fourth decoupler with offset
decpulse Perform pulse with assigned values on first decoupler
decpwrf Set fine power level of first decoupler
dec2pwrf Set fine power level of second decoupler
dec3pwrf Set fine power level of thrd decoupler
dec4pwrf Set fine power level of fourth decoupler
decr Decrement real-time integer value
decrgpulse Perform pulse on first decoupler
dec2rgpulse Perform pulse on second decoupler
dec3rgpulse Perform pulse on third decoupler
dec4rgpulse Perform pulse on fourth decoupler
decshaped_pulse Perform shaped pulse on first decoupler
dec2shaped_pulse Perform shaped pulse on second decoupler
dec3shaped_pulse Perform shaped pulse on third decoupler
dec4sahped_pulse Perform shaped pulse on fourth decoupler
decspinlock Perform waveform spinlock on first decoupler
dec2spinlock Perform waveform spinlock on second decoupler
dec3spinlock Perform waveform spinlock on third decoupler

188 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

dbl Double real-time integer value

Syntax: dbl(vi,vj)
codeint vi; /* real-time variable for
input */
codeint vj; /* real-time cariable for
output */

Description: Set the value of vj equal to twice the integer value
of vi.

Arguments: vi contains the value to be doubled and vj contains
the result. Each argument must be a real- time
variable (v1 to v42, oph, etc).

Examples: dbl(v1,v2);

dec4spinlock Perform waveform spinlock on fourth decoupler
decstepsize Set small-angle phase stepsize for first decoupler
dec2stepsize Set small-angle phase stepsize for second decoupler
dec3stepsize Set small-angle phase stepsize for third decoupler
dec4stepsize Set small-angle phase stepsize for fourth decoupler
decunblank Unblank amplifier of first decoupler
dec2unblank Unblank amplifier of second decoupler
dec3unblank Unblank amplifier of third decoupler
dec4unblank Unblank amplifier of fourth decoupler
delay Execute a time delay
divn Divide real-time integer values
dps_off Turn off graphical display of statements
dps_on Turn on graphical display of statements
dps_show Display pulse and delay icons in graphical display
dps_skip Skip graphical display of next statement

Related: add Add real- time integer values
assign Assign real- time integer value using

real- time integer
decr Decrement real- time integer value
divn Divide real- time integer values
hlv Assign half the value of real- time

integer
incr Increment real- time integer value
initval Assign real- time integer value using

numeric value
mod2 Assign real- time integer value modulo 2
mod4 Assign real- time integer value modulo 4
modn Assign real- time integer value modulo n
mult Multiply real- time integer values
sub Subtract real- time integer values

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 189

dcplrphase Set small-angle phase of first decoupler

Syntax: dcplrphase(multiplier)
codeint multiplier; /* real-time
phase-step multiplier */

Description: Set the phase as a product of multiplier and a
phase stepsize, which is set in degrees by the
decstepsize statement. If decstepsize has not been
used, the default stepsize is 90°.

The dcplrphase statement sets the total phase as a
sum of a quadrature part, a multiple of 90°, and a
small- angle part, 0° to 90°. The small- angle phase
of a DD2 MR system may have a phase resolution
of 360.0/65536 (~0.0055°). VNMRS systems may
have a phase resolution of 360.0/8192 (~0.044°)
depending on the available transmitter, and the
small- angle phase is set to the nearest step. Consult
the configuration file to determine which
transmitter is present.

The dcplrphase statement overrides the quadrature
part of the phase, set by any previous decphase
statement. The decphase statement overrides only
the quadrature part of the phase. Use
dcplrphase(zero) to remove small- angle phase and
return to only quadrature phases.

You should be aware that decrgpulse can set only
the quadrature phase. Set a small- angle phase cycle
with dcplrphase before the pulse and use zero as
the quadrature- phase multiplier for the pulse.

Arguments: multiplier is a small- angle phaseshift multiplier
for the first decoupler. The value must be a
real- time variable (v1 to v42, oph, etc), a real- time
constant (zero, one, etc) or a real- time table (t1
to t60).

Examples: dcplrphase(t1);
dcplrphase(zero);

Related: dcplr2phase Set small- angle phase of
second decoupler

dcplr3phase Set small- angle phase of third
decoupler

dcplr4phase Set small- angle phase of
fourth decoupler

decphase Set quadrature phase of first
decoupler

decstepsize Set small- angle phase stepsize
of first decoupler

obsstepsize Set small- angle phase stepsize
of observe channel

txphase Set quadrature phase of
observe channel

190 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

dcplr2phase Set small-angle phase of second decoupler

Syntax: dcplr2phase(multiplier)
codeint multiplier; /* real-time
phase-step multiplier */

Description: Set the phase as a product of multiplier and a
phase stepsize, which is set in degrees by the
dec2stepsize statement. If dec2stepsize has not
been used, the default stepsize is 90°.

The dcplr2phase statement sets the total phase as
a sum of a quadrature part, a multiple of 90°, and
a small- angle part, 0° to 90°. The small- angle phase
of a DD2 MR system may have a phase resolution
of 360.0/65536 (~0.0055°). VNMRS systems may
have a phase resolution of 360.0/8192 (~0.044°)
depending on the available transmitter, and the
small- angle phase is set to the nearest step. Consult
the configuration file to determine which
transmitter is present.

The dcplr2phase statement overrides the
quadrature part of the phase, set by any previous
decphase statement. The dec2phase statement
overrides only the quadrature part of the phase.
Use dcplr2phase(zero) to remove small- angle
phase and return to only quadrature phases.

You should be aware that dec2rgpulse can set only
the quadrature phase. Set a small- angle phase cycle
with dcplr2phase before the pulse and use zero as
the quadrature- phase multiplier for the pulse.

Arguments: multiplier is a small- angle phaseshift multiplier
for the first decoupler. The value must be a
real- time variable (v1 to v42, oph, etc), a real- time
constant (zero, one, etc) or a real- time table (t1
to t60).

Examples: dcplr2phase(t1);
dcplr2phase(zero);

xmtrphase Set small- angle phase of
observe channel

Related: dcplrphase Set small- angle phase of first
decoupler

dcplr3phase Set small- angle phase of third
decoupler

dcplr4phase Set small- angle phase of fourth
decoupler

dec2phase Set quadrature phase of second
decoupler

dec2stepsize Set small- angle phase stepsize of
second decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 191

dcplr3phase Set small-angle phase of third decoupler

Syntax: dcplr3phase(multiplier)
codeint multiplier; /* real-time
phase-step multipler */

Description: Set the phase as a product of multiplier and a
phase stepsize, which is set in degrees by the
dec3stepsize statement. If dec3stepsize has not
been used, the default stepsize is 90°.

The dcplr3phase statement sets the total phase as
a sum of a quadrature part, a multiple of 90°, and
a small- angle part, 0° to 90°. The small- angle phase
of the DD2 MR system has a phase resolution of
360.0/65536 (~0.0055°) and the VNMRS system has
a phase resolution of 360.0/8192 (~0.044°)
depending on the available transmitter, and the
small- angle phase is set to the nearest step. Consult
the configuration file to determine which
transmitter is present.

The dcplr3phase statement overrides the
quadrature part of the phase, set by any previous
dec3phase statement. The dec3phase statement
overrides only the quadrature part of the phase.
Use dcplr3phase(zero) to remove small- angle
phase and return to only quadrature phases.

You should be aware that dec3rgpulse can set only
the quadrature phase. Set a small- angle phase cycle
with dcplr3phase before the pulse and use zero as
the quadrature- phase multiplier for the pulse.

Arguments: multiplier is a small- angle phaseshift multiplier
for the first decoupler. The value must be a
real- time variable (v1 to v42, oph, etc), a real- time
constant (zero, one, etc) or a real- time table (t1
to t60).

Examples: dcplr3phase(t1);
dcplr3phase(zero);

obsstepsize Set small- angle phase stepsize of
observe channel

txphase Set quadrature phase of observe
channel

xmtrphase Set small- angle phase of observe
channel

Related: dcplrphase Set small- angle phase of first
decoupler

dcplr2phase Set small- angle phase of second
decoupler

dcplr4phase Set small- angle phase of fourth
decoupler

192 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

dcplr4phase Set small-angle phase of fourth decoupler

Syntax: dcplr4phase(multiplier)
codeint multiplier; /* real-time
phase-step multiplier */

Description: Set the phase as a product of multiplier and a
phase stepsize, which is set in degrees by the
dec4stepsize statement. If dec4stepsize has not
been used, the default stepsize is 90°.

The dcplr4phase statement sets the total phase as
a sum of a quadrature part, a multiple of 90°, and
a small- angle part, 0° to 90°. The small- angle phase
of the DD2 MR system has a phase resolution of
360.0/65536 (~0.0055°) and the VNMRS system has
a phase resolution of 360.0/8192
(~0.044°)depending on the available transmitter,
and the small- angle phase is set to the nearest step.
Consult the configuration file to determine which
transmitter is present.

The dcplr4phase statement overrides the
quadrature part of the phase, set by any previous
dec4phase statement. The dec4phase statement
overrides only the quadrature part of the phase.
Use dcplr4phase(zero) to remove small- angle
phase and return to only quadrature phases.

You should be aware that dec4rgpulse can set only
the quadrature phase. Set a small- angle phase cycle
with dcplr4phase before the pulse and use zero as
the quadrature- phase multiplier for the pulse.

Arguments: multiplier is a small- angle phaseshift multiplier
for the first decoupler. The value must be a
real- time variable (v1 to v42, oph, etc), a real- time
constant (zero, one, etc) or a real- time table (t1
to t60).

Examples: dcplrphase(t1);
dcplr4phase(zero);

dec3phase Set quadrature phase of third
decoupler

dec3stepsize Set small- angle phase stepsize of
third decoupler

obsstepsize Set small- angle phase stepsize of
observe channel

txphase Set quadrature phase of observe
channel

xmtrphase Set small- angle phase of observe
channel

Related: dcplrphase Set small- angle phase of first
decoupler

dcplr2phase Set small- angle phase of second
decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 193

decblank Blank amplifier of first decoupler

Syntax: decblank()

Disable the amplifier for the first decoupler if the
amplifier is in pulse mode. decblank has no effect
if the amplifier is in continuous mode. The first
decoupler is in continuous mode by default unless
it has an associated receiver or is in the frequency
band of another observe channel, for which it is in
pulse mode.

decblank is usually used before acquisition or
between pulses and decoupling periods to suppress
amplifier noise. It must be used before acquisiton if
the first decoupler channel has an associated
receiver.

To place the amplifier of the first decoupler in pulse
mode, create the parameter ampmode and set the
appropriate character to 'p'.

dec2blank Blank amplifier of second decoupler

Syntax: dec2blank()

Description: Disables the amplifier for the second decoupler if
the amplifier is in pulse mode. dec2blank has no
effect if the amplifier is in continuous mode. The
second decoupler is in continuous mode by default

dcplr3phase Set small- angle phase of third
decoupler

dec4phase Set quadrature phase of fourth
decoupler

dec4stepsize Set small- angle phase stepsize of
fourth decoupler

obsstepsize Set small- angle phase stepsize of
observe channel

txphase Set quadrature phase of observe
channel

xmtrphase Set small- angle phase of observe
channel

Related: dec2blank Blank amplifier of second
decoupler

dec3blank Blank amplifier of third
decoupler

dec4blank Blank amplifier of fourth
decoupler

decunblank Unblank amplifier of first
decoupler

obsblank Blank amplifier of observe
channel

obsunblank Unblank amplifier of observe
channel

194 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

unless it has an associated receiver or is in the
frequency band of another observe channel, for
which it is in pulse mode.

dec2blank is generally used before acquisition or
between pulses and decoupling periods to suppress
amplifier noise. It must be used before acquisiton if
the second decoupler channel has an associated
receiver.

To place the amplifier of the second decoupler in
pulse mode, create the parameter ampmode and set
the appropriate character to 'p'.

dec3blank Blank amplifier of third decoupler

Syntax: dec3blank()

Description: Disables the amplifier for the third decoupler if the
amplifier is in pulse mode. dec3blank has no effect
if the amplifier is in continuous mode. The third
decoupler is in continuous mode by default unless
it has an associated receiver or is in the frequency
band of another observe channel, for which it is in
pulse mode.

dec3blank is generally used before acquisition or
between pulses and decoupling periods to suppress
amplifier noise. It must be used before acquisiton if
the third decoupler channel has an associated
receiver.

To place the amplifier of the third decoupler in
pulse mode, create the parameter ampmode and set
the appropriate character to 'p'.

Related: decblank Blank amplifier of first
decoupler

dec3blank Blank amplifier of third
decoupler

dec4blank Blank amplifier of fourth
decoupler

dec2unblank Unblank amplifier of second
decoupler

obsblank Blank amplifier of observe
channel

obsunblank Unblank amplifier of observe
channel

Related: decblank Blank amplifier of first
decoupler

dec2blank Blank amplifier of second
decoupler

dec4blank Blank amplifier of fourth
decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 195

dec4blank Blank amplifier of fourth decoupler

Syntax: dec4blank()

Description: Disables the amplifier for the fourth decoupler if
the amplifier is in pulse mode. dec4blank has no
effect if the amplifier is in continuous mode. The
fourth decoupler is in continuous mode by default
unless it has an associated receiver or is in the
frequency band of another observe channel, for
which it is in pulse mode.

dec4blank is generally used before acquisition or
between pulses and decoupling periods to suppress
amplifier noise. It must be used before acquisiton if
the fourth decoupler channel has an associated
receiver.

To place the amplifier of the fourth decoupler in
pulse mode, create the parameter ampmode and set
the appropriate character to 'p'.

decoff Turn off first decoupler

Syntax: decoff()

Description: Explicitly gate off the first decoupler in the pulse
sequence. Amplifier blanking state is unchanged.

dec3unblank Unblank amplifier of third
decoupler

obsblank Blank amplifier of observe
channel

obsunblank Unblank amplifier of observe
channel

Related: decblank Blank amplifier of first decoupler
dec2blank Blank amplifier of second

decoupler
dec4blank Blank amplifier of fourth

decoupler
dec3unblank Unblank amplifier of third

decoupler
obsblank Blank amplifier of observe channel
obsunblank Unblank amplifier of observe

channel

Related: dec2off Turn off second decoupler
dec3off Turn off third decoupler
dec4off Turn off fourth decoupler
decon Turn on first decoupler
xmtroff Turn off observe channel
xmtron Turn on observe channel

196 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

dec2off Turn off second decoupler

Syntax: dec2off()

Description: Explicitly gate off the second decoupler in the pulse
sequence. Amplifier blanking state is unchanged.

dec3off Turn off third decoupler

Syntax: dec3off()

Description: Explicitly gate off the third decoupler in the pulse
sequence. Amplifier blanking state is unchanged.

dec4off Turn off fourth decoupler

Syntax: dec4off()

Description: Explicitly gate off the fourth decoupler in the pulse
sequence. Amplifier blanking state is unchanged.

decoffset Set frequency offset of first decoupler

Syntax: decoffset(frequency)
double frequency; /* frequency offset, Hz */

Description: Set the frequency offset of the first decoupler. The
offset of the first decoupler is initialized to dof
before the first decoffset statement is applied. You

Related: decoff Turn off first decoupler
dec3off Turn off third decoupler
dec4off Turn off fourth decoupler
dec2on Turn on second decoupler
xmtroff Turn off observe channel
xmtron Turn on observe channel

Related: decoff Turn off first decoupler
dec2off Turn off second decoupler
dec4off Turn off fourth decoupler
dec3on Turn on third decoupler
xmtroff Turn off observe channel
xmtron Turn on observe channel

Related: decoff Turn off first decoupler
dec2off Turn off second decoupler
dec3off Turn off third decoupler
dec4on Turn on fourth decoupler
xmtroff Turn off observe channel
xmtron Turn on observe channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 197

must explicitly use decoffset(dof) to return the
offset to dof.

The decoffset statement sets the VNMRS
synthesizer frequency, which simultaneously
determines the base frequency of pulses and the
center frequency of the receiver if it is present. You
should use caution in resetting the frequency offset.
Incorrect use of decoffset can influence the phase
coherence of the receiver and pulses scan- to- scan.

The decoffset statement inserts a 50 ns delay into
the pulse sequence. The VNMRS synthesizer can
take several microseconds to set. It may be
necessary to compensate for these delays in the
pulse sequence.

Arguments: frequency is the desired frequency offset, in Hz.
Examples: decoffset(newoffset);

decoffset(dof);

dec2offset Set frequency offset of second decoupler

Syntax: dec2offset(frequency)
double frequency; /* frequency offset, Hz
*/

Description: Set the frequency offset of the second decoupler.
The offset of the second decoupler is initialized to
dof2 before the first dec2offset statement is applied.
You must explicitly use dec2offset(dof2) to return
the offset to dof2.

The dec2offset statement sets the VNMRS
synthesizer frequency, which simultaneously
determines the base frequency of pulses and the
center frequency of the receiver if it is present. You
should use caution in resetting the frequency offset.
Incorrect use of dec2offset can influence the
phase coherence of the receiver and pulses
scan- to- scan.

The dec2offset statement inserts a 50 ns delay
into the pulse sequence. The VNMRS synthesizer
can take several microseconds to set. It may be

Related: dec2offset Set frequency offset of second
decoupler

dec3offset Set frequency offset of third
decoupler

dec4offset Set frequency offset of fourth
decoupler

obsoffset Set frequency offset of observe
channel

offset Set frequency offset of any
channel

198 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

necessary to compensate for these delays in the
pulse sequence.

Arguments: frequency is the desired frequency offset, in Hz.
Examples: dec2offset(newoffset);

dec2offset(dof2);

dec3offset Set frequency offset of third decoupler

Syntax: dec3offset(frequency)
double frequency; /* frequency offset in
Hz */

Description: Set the frequency offset of the third decoupler. The
offset of the third decoupler is initialized to dof3
before the first dec3offset statement is applied.
You must explicitly use dec3offset(dof3) to return
the offset to dof3.

The dec3offset statement sets the VNMRS
synthesizer frequency, which simultaneously
determines the base frequency of pulses and the
center frequency of the receiver if it is present. You
should use caution in resetting the frequency offset.
Incorrect use of dec3offset can influence the
phase coherence of the receiver and pulses
scan- to- scan.

The dec3offset statement inserts a 50 ns delay
into the pulse sequence. The VNMRS synthesizer
can take several microseconds to set. It may be
necessary to compensate for these delays in the
pulse sequence.

Arguments: frequency is the desired frequency offset, in Hz.
Examples: dec3offset(newoffset);

dec3offset(dof3);

Related: decoffset Set frequency offset of first
decoupler

dec3offset Set frequency offset of third
decoupler

dec4offset Set frequency offset of fourth
decoupler

obsoffset Set frequency offset of observe
channel

offset Set frequency offset of any
channel

Related: decoffset Set frequency offset of first
decoupler

dec2offset Set frequency offset of second
decoupler

dec4offset Set frequency offset of fourth
decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 199

dec4offset Set frequency offset of fourth decoupler

Syntax: dec4offset(frequency)
double frequency; /* frequency offset, Hz
*/

Description: Set the frequency offset of the fourth decoupler. The
offset of the fourth decoupler is initialized to dof4
before the first dec4offset statement is applied.
You must explicitly use dec4offset(dof4) to return
the offset to dof4.

The dec4offset statement sets the VNMRS
synthesizer frequency, which simultaneously
determines the base frequency of pulses and the
center frequency of the receiver if it is present. You
should use caution in resetting the frequency offset.
Incorrect use of dec4offset can influence the
phase coherence of the receiver and pulses
scan- to- scan.

The dec4offset statement inserts a 50 ns delay
into the pulse sequence. The VNMRS synthesizer
can take several microseconds to set. It may be
necessary to compensate for these delays in the
pulse sequence.

Arguments: frequency is the desired frequency offset, in Hz.
Examples: dec4offset(newoffset);

dec4offset(dof4);

decon Turn on first decoupler

Syntax: decon()

Description: Explicitly gate on the first decoupler in the pulse
sequence outside of a pulse. Amplifier blanking
state is unchanged. The associated amplifier must
be previously unblanked with decunblank, at least

obsoffset Set frequency offset of observe
channel

offset Set frequency offset of any
channel

Related: decoffset Set frequency offset of first
decoupler

dec2offset Set frequency offset of second
decoupler

dec3offset Set frequency offset of third
decoupler

obsoffset Set frequency offset of observe
channel

offset Set frequency offset of any
channel

200 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

2.0 µs before decon. Follow decon with a delay,
decoff, and an optional decblank.

dec2on Turn on second decoupler

Syntax: dec2on()

Description: Explicitly gate on the second decoupler in the pulse
sequence outside of a pulse. Amplifier blanking
state is unchanged. The associated amplifier must
be previously unblanked with dec2unblank, at least
2.0 ?µs before dec2on. Follow dec2on with a delay,
dec2off, and an optional dec2blank.

dec3on Turn on third decoupler

Syntax: dec3on()

Description: Explicitly gate on the third decoupler in the pulse
sequence outside of a pulse. Amplifier blanking
state is unchanged. The associated amplifier must
be previously unblanked with dec3unblank, at least
2.0 µs before dec3on. Follow dec3on with a delay,
dec3off, and an optional dec3blank.

Related: decoff Turn off first decoupler
dec2on Turn on second decoupler
dec3on Turn on third decoupler
dec4on Turn on fourth decoupler
xmtroff Turn off observe channel
xmtron Turn on observe channel

Related: dec2off Turn off second decoupler
decon Turn on first decoupler
dec3on Turn on third decoupler
dec4on Turn on fourth decoupler
xmtroff Turn off observe channel
xmtron Turn on observe channel

Related: dec3off Turn off third decoupler
decon Turn on first decoupler
dec2on Turn on second decoupler
dec4on Turn on fourth decoupler
xmtroff Turn off observe channel
xmtron Turn on observe channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 201

dec4on Turn on fourth decoupler

Syntax: dec4on()

Description: Explicitly gate on the first decoupler in the pulse
sequence outside of a pulse. Amplifier blanking
state is unchanged. The associated amplifier must
be previously unblanked with dec4unblank, at least
2.0 µs before dec4on. Follow dec4on with a delay,
dec4off, and an optional dec4blank.

decphase Set quadrature phase of first decoupler

Syntax: decphase(mutliplier)
codeint phase; /*real-time quadrature-phase
multiplier*/

Description: Explicitly set quadrature phase (multiple of 90°) for
the first decoupler outside of a pulse. If a
small- angle phase has been set previously with
dcplrphase, decphase adjusts only the portion of
the phase that is a multiple of 90°. Use
dcplrphase(zero) to clear any small- angle phase if
required.

Arguments: multiplier is a 90° multiplier for the
first- decoupler phase. The value must be a
real- time variable (v1 to v42, oph, etc), a real- time
constant (zero, one, etc), or a real- time table (t1
to t60).

Examples: decphase(v4);
decphase(t2);

Related: dec4off Turn off fourth decoupler
decon Turn on first decoupler
dec2on Turn on second decoupler
dec3on Turn on third decoupler
xmtroff Turn off observe channel
xmtron Turn on observe channel

Related: dcplrphase Set small- angle phase of first
decoupler

dec2phase Set quadrature phase of second
decoupler

dec3phase Set quadrature phase of third
decoupler

dec4phase Set quadrature phase of fourth
decoupler

txphase Set quadrature phase of observe
channel

202 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

dec2phase Set quadrature phase of second decoupler

Syntax: dec2phase(mutliplier)
codeint phase; /*real-time quadrature-phase
multiplier */

Description: Explicitly set quadrature phase (multiple of 90) for
the first decoupler outside of a pulse. If a
small- angle phase has been set previously with
dcplr2phase, dec2phase adjusts only the portion
of the phase that is a multiple of 90°. Use
dcplr2phase(zero) to clear any small- angle phase
if required.

Arguments: multiplier is a 90° multiplier for the
first- decoupler phase. The value must be a
real- time variable (v1 to v42, oph, etc), a real- time
constant (zero, one, etc), or a real- time table (t1
to t60).

Examples: dec2phase(v4);
dec2phase(t2);

dec3phase Set quadrature phase of third decoupler

Syntax: dec3phase(mutliplier)
codeint phase; /*real-time quadrature-phase
multiplier */

Description: Explicitly set quadrature phase (multiple of 90) for
the first decoupler outside of a pulse. If a
small- angle phase has been set previously with
dcplr3phase, dec3phase adjusts only the portion
of the phase that is a multiple of 90°. Use
dcplr3phase(zero) to clear any small- angle phase
if desired.

Arguments: multiplier is a 90° multiplier for the
first- decoupler phase. The value must be a
real- time variable (v1 to v42, oph, etc), a real- time
constant (zero, one, etc), or a real- time table (t1
to t60).

Examples: dec3phase(v4);
dec3phase(t2);

Related: dcplr2phase Set small- angle phase of second
decoupler

decphase Set quadrature phase of first
decoupler

dec3phase Set quadrature phase of third
decoupler

dec4phase Set quadrature phase of fourth
decoupler

txphase Set quadrature phase of observe
channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 203

dec4phase Set quadrature phase of fourth decoupler

Syntax: dec4phase(mutliplier)
codeint phase; /*real-time quadrature-phase
multiplier*/

Description: Explicitly set quadrature phase (multiple of 90) for
the first decoupler outside of a pulse. If a
small- angle phase has been set previously with
dcplr4phase, dec4phase adjusts only the portion
of the phase that is a multiple of 90°. Use
dcplr4phase(zero) to clear any small- angle phase
if desired.

Arguments: multiplier is a 90° multiplier for the
first- decoupler phase. The value must be a
real- time variable (v1 to v42, oph, etc), a real- time
constant (zero, one, etc), or a real- time table (t1
to t60).

Examples: dec4phase(v4);dec4phase(t2);

decpower Set power level of first decoupler

Syntax: decpower(power)
double power; /* power-level value, dB */

Description: Set the power level of the first decoupler using the
coarse attenuator. The power level of the first
decoupler is initialized to dpwr before the first

Related: dcplr3phase Set small- angle phase of third
decoupler

decphase Set quadrature phase of first
decoupler

dec2phase Set quadrature phase of third
decoupler

dec4phase Set quadrature phase of fourth
decoupler

txphase Set quadrature phase of
observe channel

Related: dcplr4phase Set small- angle phase of fourth
decoupler

decphase Set quadrature phase of first
decoupler

dec2phase Set quadrature phase of third
decoupler

dec3phase Set quadrature phase of third
decoupler

txphase Set quadrature phase of
observe channel

204 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

decpower statement is applied. You must explicitly use
decpower(dpwr) to return the power level to dpwr.

The decpower statement inserts a delay of 50 ns
into the pulse sequence and you should allow 3 µs
for the power to reach the new level during the next
delay. The coarse attenuator can introduce a
transient when it changes and it is good practice to
execute decpower only when the transmitter is
blanked and gated off.

Arguments: power sets the coarse attenuator in 0.5 dB steps
from a maximum power of 63 to a minimum of –37
if the 100 db attenuator is present. The stepsize is
truncated to 1.0 dB and the minimum is –16 dB if
the 79 dB attenuator is present. Consult the
configuration file to determine the available
attenuator.

dec2power Set power level of second decoupler

Syntax: dec2power(power)
double power; /* power-level value, dB */

Description: Set the power level of the first decoupler using the
coarse attenuator. The power level of the first
decoupler is initialized to dpwr2 before the first
dec2power statement is applied. You must explicitly
use dec2power(dpwr2) to return the power level to
dpwr2.

The dec2power statement inserts a delay of 50 ns
into the pulse sequence and you should allow 3 s
for the power to reach the new level during the next
delay. The coarse attenuator can introduce a
transient when it changes and it is good practice to
execute dec2power only when the transmitter is
blanked and gated off.

Arguments: power sets the coarse attenuator in 0.5 dB steps from
a maximum power of 63 to a minimum of –37 if the
100 db attenuator is present. The stepsize is truncated
to 1.0 dB and the minimum is –16 dB if the 79 dB
attenuator is present. Consult the configuration file to
determine the available attenuator.

Related: dec2power Set power level of second
decoupler

dec3power Set power level of third decoupler
dec4power Set power level of fourth

decoupler
obspower Set power level of observe channel
rlpower Set the power level of any channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 205

dec3power Set power level of third decoupler

Syntax: decpower(power)
double power; /* power-level value, dB*/

Description: Set the power level of the third decoupler using the coarse
attenuator. The power level of the third decoupler is
initialized to dpwr3 before the first dec3power statement
is applied. You must explicitly use dec3power(dpwr3)
to return the power level to dpwr3.

The dec3power statement inserts 50 ns into the
pulse sequence and you should allow 3 µs for the
power to reach the new level during the next delay.
The coarse attenuator can introduce a transient
when it changes and it is good practice to execute
dec3power only when the transmitter is blanked
and gated off.

Arguments: power sets the coarse attenuator in 0.5 dB steps
from a maximum power of 63 to a minimum of –37
if the 100 db attenuator is present. The stepsize is
truncated to 1.0 dB and the minimum is –16 dB if
the 79 dB attenuator is present. Consult the
configuration file to determine the available
attenuator.

dec4power Set power level of fourth decoupler

Syntax: dec4power(power)
double power; /* power-level value, dB*/

Description: Set the power level of the first decoupler using the
coarse attenuator. The power level of the first
decoupler is initialized to dpwr4 before the first

Related: decpower Set power level of first decoupler
dec3power Set power level of third decoupler
dec4power Set power level of fourth

decoupler
obspower Set power level of observe channel
rlpower Set the power level of any

channel

Related: decpower Set power level of first decoupler
dec2power Set power level of second

decoupler
dec4power Set power level of fourth

decoupler
obspower Set power level of observe

channel
rlpower Set the power level of any

channel

206 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

dec4power statement is applied. You must explicitly
use dec4power(dpwr4) to return the power level to
dpwr4.

The dec4power statement inserts 50 ns into the
pulse sequence and you should allow 3 s for the
power to reach the new level during the next delay.
The coarse attenuator can introduce a transient
when it changes and it is good practice to execute
dec4power only when the transmitter is blanked
and gated off.

Arguments: power sets the coarse attenuator in 0.5 dB steps
from a maximum power of 63 to a minimum of –37
if the 100 db attenuator is present. The stepsize is
truncated to 1.0 dB and the minimum is –16 dB if
the 79 dB attenuator is present. Consult the
configuration file to determine the available
attenuator.

decprgoff End waveform decoupling on first decoupler

Syntax: decprgoff()

Description: Terminate programmable waveform decoupling on
the first decoupler, gate the first decoupler off, and
blank the associated amplifier if it is in pulse mode.

Related: decpower Set power level of first
decoupler

dec2power Set power level of second
decoupler

dec3power Set power level of third
decoupler

obspower Set power level of observe
channel

rlpower Set the power level of any
channel

Related: decblank Blank amplifier of first
decoupler

dec2prgoff End waveform decoupling on
second decoupler

dec3prgoff End waveform decoupling on
third decoupler

dec4prgoff End waveform decoupling on
fourth decoupler

decprgon Start waveform decoupling
on first decoupler

decprgonOffset Start waveform decoupling
on first decoupler with offset

obsprgoff End waveform decoupling on
observe channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 207

dec2prgoff End waveform decoupling on second decoupler

Syntax: dec2prgoff()

Description: Terminate programmable waveform decoupling on
the second decoupler, gate the second decoupler off,
and blank the associated amplifier if it is in pulse
mode.

dec3prgoff End waveform decoupling on third decoupler

Syntax: dec3prgoff()

Description: Terminate programmable waveform decoupling on
the third decoupler, gate the third decoupler off,
and blank the associated amplifier if it is in pulse
mode.

obsprgon Start waveform decoupling
on observe channel

obsprgonOffset Start waveform decoupling
on observe channel with
offset

Related: dec2blank Blank amplifier of second
decoupler

Decprgoff End waveform decoupling on
first decoupler

dec3prgoff End waveform decoupling on
third decoupler

dec4prgoff End waveform decoupling on
fourth decoupler

dec2prgon Start waveform decoupling
on second decoupler

dec2prgonOffset Start waveform decoupling
on second decoupler with
offset

obsprogoff End waveform decoupling on
observe channel

obsprgon Start waveform decoupling
on observe channel

obsprgonOffset Start waveform decoupling
on observe channel with
offset

Related: dec3blank Blank amplifier of third
decoupler

decprgoff End waveform decoupling on
first decoupler

208 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

dec4prgoff End waveform decoupling on fourth decoupler

Syntax: dec4prgoff()

Description: Terminate programmable waveform decoupling on
the fourth decoupler, gate the fourth decoupler off,
and blank the associated amplifier if it is in pulse
mode.

decprgon Start waveform decoupling on first decoupler

Syntax: decprgon(pattern,90_pulselength,tipangle_resoln)
char *pattern; /* name of .DEC file */
double 90_pulselength; /* 90-degree pulse
length, seconds */
double tipangle_resoln; /* tip-angle
resolution */

dec2prgoff End waveform decoupling on
second decoupler

dec4prgoff End waveform decoupling on
fourth decoupler

dec3prgon Start waveform decoupling on
third decoupler

dec3prgonOffset Start waveform decoupling on
third decoupler with offset

obsprogoff End waveform decoupling on
observe channel

obsprgon Start waveform decoupling on
observe channel

obsprgonOffset Start waveform decoupling on
observe channel with offset

Related: dec4blank Blank amplifier of fourth
decoupler

decprgoff End waveform decoupling on
first decoupler

dec2prgoff End waveform decoupling on
second decoupler

dec3prgoff End waveform decoupling on
third decoupler

dec4prgon Start waveform decoupling
on fourth decoupler

dec4prgonOffset Start waveform decoupling
on fourth decoupler with
offset

obsprgoff End waveform decoupling on
observe channel

obsprgon Start waveform decoupling
on observe channel

obsprgonOffset Start waveform decoupling
on observe channel with
offset

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 209

return int ticks /* 12.5 ns ticks,
one cycle */

Description: Execute programmable decoupling on the first
decoupler under waveform control, unblank the
associated amplifier, and gate the first decoupler on
for patterns without an explicit gate column.
decprgon returns an integer with the number of
12.5- ns ticks in one cycle of the decoupling pattern.
It is a good practice to unblank the associated
amplifier with decunblank, at least 2.0 µs before
decprgon.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90°.
Often 90_pulselength is set equal 1/dmf in which
dmf is a step rate.

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

For many patterns, 90_pulselength is the actual
90° pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case, tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,
tipangle_resoln is nominally 90 and elements in
the pattern have tip- angle durations that are
multiples of 90.

For some patterns, 90_pulselength is the actual
90° pulse length but elements of the pattern have
arbitrary flip angles that are multiples of a
tipangle_resoln, that is less than 90° (c.f. 1.0°).
In this case tipangle_resoln is the divisor
(c.f. 1.0) and for good practice it is also a divisor
of 90.0.

Examples: decprgon("garp1",1/dmf, 1.0);
decprgon(modtype,pwx90,dres);
ticks = decprgon("waltz16",1/dmf,90.0);

Related: decprgoff End waveform decoupling on
first decoupler

decprgon Start waveform decoupling
on second decoupler with
offset

dec2prgon Start waveform decoupling
on second decoupler

210 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

dec2prgon Start waveform decoupling on second decoupler

Syntax: dec2prgon(pattern,90_pulselength,tipangle_resoln)
char *pattern; /* name of .DEC file */
double 90_pulselength; /* 90-degree pulse
length, seconds */
double tipangle_resoln; /* tip-angle
resolution */
return int ticks /* 12.5 ns ticks,
one cycle */

Description: Execute programmable decoupling on the second
decoupler under waveform control, unblank the
associated amplifier, and gate the second decoupler
on for patterns without an explicit gate column.
decprgon returns an integer with the number of
12.5- ns ticks in one cycle of the decoupling pattern.
It is a good practice to unblank the associated
amplifier with dec2unblank, at least 2.0 µs before
decprgon.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90°.
Often 90_pulselength is set equal 1/dmf in which
dmf is a step rate.

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

For many patterns 90_pulselength is the actual
90° pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,

dec3prgon Start waveform decoupling
on third decoupler

dec4prgon Start waveform decoupling
on fourth decoupler

decunblank Unblank the amplifier of first
decoupler

obsprogoff End waveform decoupling on
observe channel

obsprgon Start waveform decoupling
on observe channel

obsprgonOffset Start waveform decoupling
on observe channel with
offset

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 211

tipangle_resoln is nominally 90 and elements in
the pattern have tip- angle durations that are
multiples of 90.

For some patterns, 90_pulselength is the actual
90o pulse length but elements of the pattern have
arbitrary flip angles that are multiples of a
tipangle_resoln, that is less than 90.0° (c.f. 1.0°).
In this case tipangle_resoln is the divisor (c.f. 1.0)
and for good practice it is also a divisor of 90.0.

Examples: dec2prgon("garp1",1/dmf, 1.0);
dec2prgon(modtype,pwx90,dres);
ticks = dec2prgon("waltz16",1/dmf,90.0);

dec3prgon Start waveform decoupling on third decoupler

Syntax: dec3prgon(pattern,90_pulselength,tipangle_resoln)
char *pattern; /* name of .DEC file */
double 90_pulselength; /* 90-degree pulse
length, seconds */
double tipangle_resoln; /* tip-angle
resolution */
return int ticks /* 12.5 ns ticks,
one cycle */

Description: Execute programmable decoupling on the first
decoupler under waveform control, unblank the
associated amplifier, and gate the decoupler on for
patterns without an explicit gate column.
dec3prgon returns an integer with the number of
12.5- ns ticks in one cycle of the decoupling pattern.
It is a good practice to unblank the associated
amplifier with dec3unblank, at least 2.0 µs before
dec3prgon.

Related: dec2prgoff End waveform decoupling on
second decoupler

decprgon Start waveform decoupling
on first decoupler

dec2prgonOffset Start waveform decoupling
on second decoupler

dec3prgon Start waveform decoupling
on third decoupler

dec4prgon Start waveform decoupling
on fourth decoupler

dec2unblank Unblank amplifier of first
decoupler

obsprgoff End waveform decoupling on
observe channel

obsprgon Start waveform decoupling
on observe channel

obsprgonOffset Start waveform decoupling
on observe channel with
offset

212 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90o.
Often 90_pulselength is set equal 1/dmf in which
dmf is a step rate.

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

For many patterns, 90_pulselength is the actual
90° pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case, tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,
tipangle_resoln is nominally 90 and elements in
the pattern have tip- angle durations that are
multiples of 90.

For some patterns, 90_pulselength is the actual
90° pulse length but elements of the pattern have
arbitrary flip angles that are multiples of a
tipangle_resoln, that is less than 90.0° (c.f. 1.0°).
In this case tipangle_resoln is the divisor
(c.f. 1.0) and for good practice it is also a divisor
of 90.0.

Examples: dec3prgon("garp1",1/dmf, 1.0);
dec3prgon(modtype,pwx90,dres);
ticks = dec3prgon("waltz16",1/dmf,90.0);

Examples:

Related: dec3prgoff End waveform decoupling on
third decoupler

decprgon Start waveform decoupling
on first decoupler

dec2prgon Start waveform decoupling
on second decoupler

dec3prgonOffset Start waveform decoupling
on third decoupler with
offset

dec4prgon Start waveform decoupling
on fourth decoupler

dec3unblank Unblank amplifier of third
decoupler

obsprogoff End waveform decoupling on
observe channel

obsprgon Start waveform decoupling
on observe channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 213

dec4prgon Start waveform decoupling on fourth decoupler

Syntax: dec4prgon(pattern,90_pulselength,tipangle_resoln)
char *pattern; /* name of .DEC file */
double 90_pulselength; /* 90-degree pulse
length, seconds */
double tipangle_resoln; /* tip-angle
resolution */
return int ticks /* 12.5 ns ticks,
one cycle */

Description: Execute programmable decoupling on the first
decoupler under waveform control, unblank the
associated amplifier, and gate the decoupler on for
patterns without an explicit gate column.
dec4prgon returns an integer with the number of
12.5- ns ticks in one cycle of the decoupling pattern.
It is a good practice to unblank the associated
amplifier with dec4unblank, at least 2.0 µs before
dec4prgon.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90o.
Often 90_pulselength is set equal 1/dmf in which
dmf is a step rate.

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

For many patterns, 90_pulselength is the actual
90° pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case, tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,
tipangle_resoln is nominally 90 and elements in
the pattern have tip- angle durations that are
multiples of 90.

For some patterns, 90_pulselength is the actual
90° pulse length but elements of the pattern have
arbitrary flip angles that are multiples of a
tipangle_resoln, that is less than 90.0° (c.f. 1.0°).
In this case, tipangle_resoln is the divisor
(c.f. 1.0) and for good practice it is also a divisor
of 90.0.

obsprgonOffset Start waveform decoupling
on observe channel with
offset

214 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Examples: dec4prgon("garp1",1/dmf, 1.0);
dec4prgon(modtype,pwx90,dres);
ticks = dec4prgon("waltz16",1/dmf,90.0);

decprgonOffset Start waveform decoupling on first decoupler with offset

Syntax: decprgon(pattern,90_pulselength,tipangle_resoln,
offset)
char *pattern; /* name of .DEC file */
double 90_pulselength; /* 90-degree pulse
length, seconds */
double tipangle_resoln; /* tip-angle
resolution */
double offset; /* frequency offset, Hz */
return int ticks /* 12.5 ns ticks, one cycle */

Description: Execute programmable decoupling on the first
decoupler under waveform control with a frequency
offset that is applied automatically. The statement
decprgonOffset unblanks the associated amplifier
and gates the first decoupler on for patterns
without an explicit gate column. decprgonOffset
returns an integer with the number of 12.5- ns ticks
in one cycle of the decoupling pattern. It is a good
practice to unblank the associated amplifier with
decunblank, at least 2.0 µs before decprgonOffset.

The frequency offset is applied by phase modulation
of the base pattern in the rf controller. The phase
modulation is achieved by expanding the pattern to
include linear phase steps as well as by
interpolation in real- time. Use of decprgonOffset
with a base pattern achieves about a ten- fold
compression of steps relative to an equivalent
pattern supplied in the .DEC file.

Related: dec4prgoff End waveform decoupling on
fourth decoupler

decprgon Start waveform decoupling on
first decoupler

dec2prgon Start waveform decoupling on
second decoupler

dec3prgon Start waveform decoupling on
third decoupler

dec4prgonOffset Start waveform decoupling on
fourth decoupler with offset

dec4unblank Unblank amplifier of fourth
decoupler

obsprgoff End waveform decoupling on
observe channel

obsprgon Start waveform decoupling on
observe channel

obsprgonOffset Start waveform decoupling on
observe channel with offset

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 215

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90°.
Often 90_pulselength is set equal 1/dmf in which
dmf is a step rate. decprgonOffset

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

For many patterns, 90_pulselength is the actual
90o pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case, tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,
tipangle_resoln is nominally 90 and elements in
the pattern have tip- angle durations that are
multiples of 90.

For some patterns, 90_pulselength is the actual
90° pulse length but elements of the pattern have
arbitrary flip angles that are multiples of a
tipangle_resoln, that is less than 90° (c.f. 1.0°).
In this case, tipangle_resoln is the divisor
(c.f. 1.0) and for good practice it is also a divisor
of 90.0.

offset is a frequency offset relative to the
synthesizer frequency, in Hz.

Examples: decprgonOffset("garp1",1/dmf, 1.0,1000.0);
decprgonOffset(modtype,pwx90,dres,1000.0);
ticks =
decprgonOffset("waltz16",1/dmf,90.0,1000.0);

Related: decprgoff End waveform decoupling on
first decoupler

decprgon Start waveform decoupling
on first decoupler

dec2prgonOffset Start waveform decoupling
on second decoupler with
offset

dec3prgonOffset Start waveform decoupling
on third decoupler with
offset

dec4prgonOffset Start waveform decoupling
on fourth decoupler with
offset

decunblank Unblank the amplifier of
first decoupler

216 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

dec2prgonOffset Start waveform decoupling on second decoupler with offset

Syntax: dec2prgonOffset(pattern,90_pulselength,
tipangle_resoln,offset)
char *pattern; /* name of .DEC file */
double 90_pulselength; /* 90-degree pulse
length, seconds */
double tipangle_resoln; /* tip-angle
resolution */
double offset; /* frequency offset,
Hz */
return int ticks /* 12.5 ns ticks,
one cycle */

Description: Execute programmable decoupling on the first
decoupler under waveform control with a frequency
offset that is applied automatically. The statement
dec2prgonOffset unblanks the associated amplifier
and gates the first decoupler on for patterns
without an explicit gate column. dec2prgonOffset
returns an integer with the number of 12.5- ns ticks
in one cycle of the decoupling pattern. It is a good
practice to unblank the associated amplifier with
dec2unblank, at least 2.0 µs before
dec2prgonOffset.

The frequency offset is applied by phase modulation
of the base pattern in the rf controller. The phase
modulation is achieved by expanding the pattern to
include linear phase steps as well as by
interpolation in real- time. Use of dec2prgonOffset
with a base pattern achieves about a ten- fold
compression of steps relative to an equivalent
pattern supplied in the.DEC file.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90°.
Often 90_pulselength is set equal 1/dmf where dmf
is a step rate. dec2prgonOffset

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

obsprogoff End waveform decoupling on
observe channel

obsprgon Start waveform decoupling
on observe channel

obsprgonOffset Start waveform decoupling
on observe channel with
offset

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 217

For many patterns, 90_pulselength is the actual
90° pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case, tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,
tipangle_resoln is nominally 90 and elements in
the pattern have tip- angle durations that are
multiples of 90.

For some patterns, 90_pulselength is the actual
90° pulse length but elements of the pattern have
arbitrary flip angles that are multiples of a
tipangle_resoln, that is less than 90° (c.f. 1.0°).
In this case, tipangle_resoln is the divisor
(c.f. 1.0) and for good practice it is also a divisor
of 90.0.

offset is a frequency offset relative to the
synthesizer frequency, in Hz.

Examples: dec2prgonOffset("garp1",1/dmf, 1.0,1000.0);
dec2prgonOffset(modtype,pwx90,dres,1000.0);
ticks =
dec2prgonOffset("waltz16",1/dmf,90.0,1000.0)
;

dec3prgonOffset Start waveform decoupling on third decoupler with offset

Syntax: dec3prgonOffset(pattern,90_pulselength,tipangle_reso
ln,offset)
char *pattern; /* name of .DEC file */

Related: dec2prgoff End waveform decoupling
on second decoupler

decprgonOffset Start waveform decoupling
on first decoupler with
offset

dec2prgon Start waveform decoupling
on second decoupler

dec3prgonOffset Start waveform decoupling
on third decoupler with
offset

dec4prgonOffset Start waveform decoupling
on fourth decoupler with
offset

dec2unblank Unblank the amplifier of
second decoupler

obsprgoff End waveform decoupling
on observe channel

obsprgon Start waveform decoupling
on observe channel

obsprgonOffset Start waveform decoupling
on observe channel with
offset

218 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

double 90_pulselength; /* 90-degree pulse
length, seconds */
double tipangle_resoln; /* tip-angle
resolution */
double offset; /* frequency offset,
Hz */
return int ticks /* 12.5 ns ticks,
one cycle */

Description: Execute programmable decoupling on the first
decoupler under waveform control with a frequency
offset that is applied automatically. The statement
dec3prgonOffset unblanks the associated amplifier
and gates the first decoupler on for patterns
without an explicit gate column. dec3prgonOffset
returns an integer with the number of 12.5- ns ticks
in one cycle of the decoupling pattern. It is a good
practice to unblank the associated amplifier with
dec3unblank, at least 2.0 µs before
dec3prgonOffset.

The frequency offset is applied by phase modulation
of the base pattern in the rf controller. The phase
modulation is achieved by expanding the pattern to
include linear phase steps as well as by
interpolation in real- time. Use of dec3prgonOffset
with a base pattern achieves about a ten- fold
compression of steps relative to an equivalent
pattern supplied in the .DEC file.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90°.
Often 90_pulselength is set equal 1/dmf where
dmf is a step rate.

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

For many patterns, 90_pulselength is the actual
90o pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case, tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,
tipangle_resoln is nominally 90 and elements in
the pattern have tip- angle durations that are
multiples of 90.

For some patterns, 90_pulselength is the actual
90° pulse length but elements of the pattern have
arbitrary flip angles that are multiples of a

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 219

tipangle_resoln, that is less than 90° (c.f. 1.0°).
In this case, tipangle_resoln is the divisor (c.f. 1.0)
and for good practice it is also a divisor of 90.0.

offset is a frequency offset relative to the
synthesizer frequency, in Hz.

Examples: dec3prgonOffset("garp1",1/dmf, 1.0,1000.0);
dec3prgonOffset(modtype,pwx90,dres,1000.0);
ticks =
dec3prgonOffset("waltz16",1/dmf,90.0,1000.0)
;

dec4prgonOffset Start waveform decoupling on first decoupler with offset

Syntax: dec4prgonOffset(pattern,90_pulselength,tipangle_reso
ln,offset)
char *pattern; /* name of .DEC file */
double 90_pulselength; /* 90-degree pulse
length, seconds */
double tipangle_resoln; /* tip-angle
resolution */
double offset; /* frequency offset,
Hz */
return int ticks /* 12.5 ns ticks,
one cycle */

Description: Execute programmable decoupling on the fourth
decoupler under waveform control with a frequency
offset that is applied automatically. The statement
dec4prgonOffset unblanks the associated amplifier

Related: dec3prgoff End waveform decoupling on
third decoupler

decprgonOffset Start waveform decoupling
on first decoupler with offset

dec2prgonOffset Start waveform decoupling
on second decoupler with
offset

dec3prgon Start waveform decoupling
on third decoupler

dec4prgonOffset Start waveform decoupling
on fourth decoupler with
offset

dec3unblank Unblank the amplifier of
third decoupler

obsprgoff End waveform decoupling on
observe channel

obsprgon Start waveform decoupling
on observe channel

obsprgonOffset Start waveform decoupling
on observe channel with
offset

220 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

and gates the first decoupler on for patterns
without an explicit gate column. dec4prgonOffset
returns an integer with the number of 12.5- ns ticks
in one cycle of the decoupling pattern. It is a good
practice to unblank the associated amplifier with
dec4unblank, at least 2.0 µs before
dec4prgonOffset.

The frequency offset is applied by phase modulation
of the base pattern in the rf controller. The phase
modulation is achieved by expanding the pattern to
include linear phase steps as well as by
interpolation in real- time. Use of dec4prgonOffset
with a base pattern achieves about a ten- fold
compression of steps relative to an equivalent
pattern supplied in the .DEC file.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90°.
Often 90_pulselength is set equal 1/dmf where
dmf is a step rate.

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

For many patterns, 90_pulselength is the actual
90o pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case, tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,
tipangle_resoln is nominally 90 and elements in
the pattern have tip- angle durations that are
multiples of 90.

For some patterns, 90_pulselength is the actual
90° pulse length but elements of the pattern have
arbitrary flip angles that are multiples of a
tipangle_resoln, that is less than 90° (c.f. 1.0°). In
this case, tipangle_resoln is the divisor (c.f. 1.0)
and for good practice it is also a divisor of 90.0.

offset is a frequency offset relative to the
synthesizer frequency, in Hz.

Examples: dec4prgonOffset("garp1",1/dmf, 1.0,1000.0);
dec4prgonOffset(modtype,pwx90,dres,1000.0);
ticks =
dec4prgonOffset("waltz16",1/dmf,90.0,1000.0)
;

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 221

decpulse Perform pulse with assigned values on first decoupler

Syntax: decpulse(width,phase)
double width; /* duration of pulse, seconds
*/
codeint phase; /* real-time quadrature-phase
multiplier for pulse */

Description: Set the quadrature phase and gates the first
decoupler on and off at the current power level
with amplifier unblanking and blanking and no
predelay or postdelay. It is a good practice to
unblank the associated amplifier with decunblank,
at least
2.0 µs before decpulse if the associated amplifier
is in pulse mode.

Arguments: width is the duration of the pulse, in seconds.

phase is a 90° multiplier for the first- decoupler
phase. The value must be a real- time variable (v1
to v42, oph, etc), a real- time constant (zero, one,
etc), or a real- time table (t1 to t60).

Examples: decpulse(pp,v3);
decpulse(2.0*pp,zero);

Related: dec4prgoff End waveform decoupling
on fourth decoupler

decprgonOffset Start waveform decoupling
on first decoupler with
offset

dec2prgonOffset Start waveform decoupling
on second decoupler with
offset

dec3prgonOffset Start waveform decoupling
on third decoupler with
offset

dec4prgon Start waveform decoupling
on fourth decoupler

dec4unblank Unblank the amplifier of
fourth decoupler

obsprogoff End waveform decoupling
on observe channel

obsprgon Start waveform decoupling
on observe channel

obsprgonOffset Start waveform decoupling
on observe channel with
offset

Related: decrgpulse Perform pulse on first decoupler
obspulse Perform pulse with assigned

values on observe channel

222 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

decpwrf Set fine power level of first decoupler

Syntax: decpwrf(amplitude)
double amplitude; /* fine-power value, */

Description: Set the fine- power level of the first decoupler using
the linear modulator. The fine- power level of the
first decoupler is initialized to dpwrf before the first
decpwrf statement is applied. You must explicitly
use decpwrf(dpwrf) to return the power level to
dpwrf. Fine power units are linear in voltage.

Arguments: amplitude sets the fine power in units of 1.0 from
a maxium of 4095.0 to a minimum of 0.0. If the
12- bit linear modulator is available the stepsize is
1.0. If the 16- bit linear modulator is present
decimal values (3 significant figures) are allowed.
Consult the configuration file to determine the
available modulator. The fine power and coarse
power can be used interchangeably where 6 dB
units of coarse power correspond to a x2 change of
the fine power.

Examples: decpwrf(3500);
decpwrf(3500.324);

dec2pwrf Set fine power level of second decoupler

Syntax: dec2pwrf(amplitude)
double amplitude; /* fine-power value*/

Description: Set the fine- power level of the second decoupler
using the linear modulator. The fine- power level of
the second decoupler is initialized to dpwrf2 before
the first decpwrf statement is applied. You must
explicitly use dec2pwrf(dpwrf2) to return the

pulse Perform pulse with assigned
values on observe channel

rgpulse Perform pulse on observe channel

Related: dec2pwrf Set fine power level of second
decoupler

dec3pwrf Set fine power level of third
decoupler

dec4pwrf Set fine power level of fourth
decoupler

obspwrf Set fine power level of observe
channel

rlpwrf Set fine power level of any channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 223

power level to dpwrf2. Fine power units are linear
in voltage.

Arguments: amplitude sets the fine power in units of 1.0 from
a maxium of 4095.0 to a minimum of 0.0. If the
12- bit linear modulator is available the stepsize is
1.0. If the 16- bit linear modulator is present
decimal values (3 significant figures) are allowed.
Consult the configuration file to determine the
available modulator. The fine power and coarse
power can be used interchangeably where 6 dB
units of coarse power correspond to a x2 change of
the fine power.

Examples: dec2pwrf(3500);
dec2pwrf(3500.324);

dec3pwrf Set fine power level of third decoupler

Syntax: dec3pwrf(amplitude)
double amplitude; /* fine-power value */

Description: Set the fine- power level of the third decoupler using
the linear modulator. The fine- power level of the
third decoupler is initialized to dpwrf3 before the
first dec3pwrf statement is applied. You must
explicitly use dec3pwrf(dpwrf) to return the power
level to dpwrf3. Fine power units are linear in
voltage.

Arguments: amplitude sets the fine power in units of 1.0 from
a maxium of 4095.0 to a minimum of 0.0. If the
12- bit linear modulator is available the stepsize is
1.0. If the 16- bit linear modulator is present
decimal values (3 significant figures) are allowed.
Consult the configuration file to determine the
available modulator. The fine power and coarse
power can be used interchangeably where 6 dB
units of coarse power correspond to a x2 change of
the fine power.

Examples: dec3pwrf(3500);
dec3pwrf(3500.324);

Related: decpwrf Set fine power level of first
decoupler

dec3pwrf Set fine power level of third
decoupler

dec4pwrf Set fine power level of fourth
decoupler

obspwrf Set fine power level of observe
channel

rlpwrf Set fine power level of any
channel

224 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

dec4pwrf Set fine power level of fourth decoupler

Syntax: dec4pwrf(amplitude)
double amplitude; /* fine-power value*/

Description: Set the fine- power level of the fourth decoupler
using the linear modulator. The fine- power level of
the fourth decoupler is initialized to dpwrf4 before
the first dec4pwrf statement is applied. You must
explicitly use dec4pwrf(dpwrf) to return the power
level to dpwrf4. Fine power units are linear in
voltage.

Arguments: amplitude sets the fine power in units of 1.0 from
a maxium of 4095.0 to a minimum of 0.0. If the
12- bit linear modulator is available the stepsize is
1.0. If the 16- bit linear modulator is present
decimal values (3 significant figures) are allowed.
Consult the configuration file to determine the
available modulator. The fine power and coarse
power can be used interchangeably where 6 dB
units of coarse power correspond to a x2 change of
the fine power.

Examples: dec4pwrf(3500);
dec4pwrf(3500.324);

decr Decrement real-time integer value

Syntax: decr(vi)
codeint vi; /* real-time variable to be
decremented */

Related: decpwrf Set fine power level of first
decoupler

dec2pwrf Set fine power level of second
decoupler

dec4pwrf Set fine power level of fourth
decoupler

obspwrf Set fine power level of observe
channel

rlpwrf Set fine power level of any channel

Related: decpwrf Set fine power level of first
decoupler

dec2pwrf Set fine power level of second
decoupler

dec3pwrf Set fine power level of third
decoupler

obspwrf Set fine power level of observe
channel

rlpwrf Set fine power level of any channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 225

Description: Decrement the integer value of vi by 1.

Arguments: vi is the integer to be decremented. It must be a
real- time variable (cc to v42, oph, etc).

Examples: decr(v5);

decrgpulse Perform pulse on first decoupler

Syntax: decrgpulse(width,phase,RG1,RG2)
double width; /* duration of pulse, seconds
*/
codeint phase; /* real-time
quadrature-phase multiplier for pulse */
double RG1; /* duration of predelay,
seconds */
double RG2; /* duration of postdelay,
seconds */

Description: Set the quadrature phase and gates of the first
decoupler on and off at the current power level
with amplifier unblanking and blanking. decrgpulse
is preceded by a predelay and followed by a
postdelay. The associated amplifier is unblanked if
it is in pulse mode and the phase is set, both at the
beginning of the predelay. The associated amplifier
is blanked at the end of the postdelay if it is in
pulse mode.

Arguments: width is the duration of the pulse, in seconds.

phase is a 90° multiplier for the first-decoupler
phase. The value must be a real- time variable (v1 to
v42, oph, etc), a real- time constant (zero, one, etc),
or a real- time table (t1 to t60).

RG1 is the duration of the predelay, in seconds.

Related: add Add real- time integer values
assign Assign real- time integer value using

real- time integer
dbl Double real- time integer value
divn Divide real- time integer values
hlv Assign half the value of real- time

integer
incr Increment real- time integer value
initval Assign real- time integer value using

numeric value
mod2 Assign real- time integer value

modulo 2
mod4 Assign real- time integer value

modulo 4
modn Assign real- time integer value

modulo n
mult Multiply real- time integer values
sub Subtract real- time integer values

226 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

RG2 is the duration of the postdelay, in seconds.
Examples: decrgpulse(pp,v3,rof1,rof2);

decrgpulse(pp,zero,1.0e-6,0.2e-6);

dec2rgpulse Perform pulse on second decoupler

Syntax: dec2rgpulse(width,phase,RG1,RG2)
double width; /* duration of pulse, seconds */
codeint phase; /* real-time
quadrature-phase multiplier for pulse */
double RG1; /* duration of predelay, seconds
*/
double RG2; /* duration of postdelay, seconds
*/

Description: Set the quadrature phase and gates of the second
decoupler on and off at the current power level
with amplifier unblanking and blanking.
dec2rgpulse is preceded by a predelay and
followed by a postdelay. The associated amplifier is
unblanked if it is in pulse mode and the phase is
set, both at the beginning of the predelay. The
associated amplifier is blanked at the end of the
postdelay if it is in pulse mode.

Arguments: width is the duration of the pulse, in seconds.

Related: decpulse Perform pulse with
assigned values on first
decoupler

dec2rgpulse Perform pulse on second
decoupler

dec3rgpulse Perform pulse on third
decoupler

dec4rgpulse Perform pulse on fourth
decoupler

decshaped_pulse Perform shaped pulse on
first decoupler

obspulse Perform pulse with
assigned values on observe
channel

pulse Perform pulse with
assigned values on observe
channel

rgpulse Perform pulse on observe
channel

shaped_pulse Perform shaped pulse on
observe channel

simshaped_pulse Perform simultaneous
shaped pulses, observe and
first decoupler

simpulse Perform simultaneous
pulses, observe and first
decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 227

phase is a 90° multiplier for the first- decoupler
phase. The value must be a real- time variable (v1
to v42, oph, etc), a real- time constant (zero, one,
etc), or a real- time table (t1 to t60).

RG1 is the duration of the predelay, in seconds.

RG2 is the duration of the postdelay, in seconds.
Examples: dec2rgpulse(pp,v3,rof1,rof2);

dec2rgpulse(pp,zero,1.0e6,0.2e6);

dec3rgpulse Perform pulse on third decoupler

Syntax: dec3rgpulse(width,phase,RG1,RG2)
double width; /* duration of pulse, seconds
*/
codeint phase; /* real-time
quadrature-phase multiplier for pulse */
double RG1; /* duration of predelay,
seconds */
double RG2; /* duration of postdelay,
seconds */

Description: Set the quadrature phase and gates of the third
decoupler on and off at the current power level
with amplifier unblanking and blanking.
dec3rgpulse is preceded by a predelay and

Related: decpulse Perform pulse with
assigned values on first
decoupler

decrgpulse Perform pulse on first
decoupler

dec3rgpulse Perform pulse on third
decoupler

dec4rgpulse Perform pulse on fourth
decoupler

dec2shaped_pulse Perform shaped pulse on
second decoupler

obspulse Perform pulse with
assigned values on
observe channel

pulse Perform pulse with
assigned values on
observe channel

rgpulse Perform pulse on observe
channel

shaped_pulse Perform shaped pulse on
observe channel

sim3shaped_pulse Perform simultaneous
shaped pulses, observe,
first and second
decoupler

sim3pulse Perform simultaneous
pulses, observe, first and
second decoupler

228 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

followed by a postdelay. The associated amplifier is
unblanked if it is in pulse mode and the phase is
set, both at the beginning of the predelay. The
associated amplifier is blanked at the end of the
postdelay if it is in pulse mode.

Arguments: width is the duration of the pulse, in seconds.

phase is a 90° multiplier for the first- decoupler
phase. The value must be a real- time variable (v1
to v42, oph, etc), a real- time constant (zero, one,
etc), or a real- time table (t1 to t60).

RG1 is the duration of the predelay, in seconds.

RG2 is the duration of the predelay, in seconds.
Examples: dec3rgpulse(pp,v3,rof1,rof2);

dec3rgpulse(pp,zero,1.0e6,0.2e6);

dec4rgpulse Perform pulse on fourth decoupler

Syntax: dec4rgpulse(width,phase,RG1,RG2)
double width; /* duration of pulse, seconds
*/
codeint phase; /* real-time
quadrature-phase multiplier for pulse */
double RG1; /* duration of predelay,
seconds */
double RG2; /* duration of postdelay,
seconds */

Related: decpulse Perform pulse with assigned
values on first decoupler

decrgpulse Perform pulse on first
decoupler

dec3rgpulse Perform pulse on third
decoupler

dec4rgpulse Perform pulse on fourth
decoupler

dec3shaped_pulse Perform shaped pulse on
third decoupler

obspulse Perform pulse with assigned
values on observe channel

pulse Perform pulse with assigned
values on observe channel

rgpulse Perform pulse on observe
channel

shaped_pulse Perform shaped pulse on
observe channel

sim4shaped_pulse Perform simultaneous
shaped pulses, observe, first
second and third decouplers

sim4pulse Perform simultaneous
pulses, observe, first second
and third decouplers

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 229

Description: Set the quadrature phase and gates of the fourth
decoupler on and off at the current power level
with amplifier unblanking and blanking.
dec4rgpulse is preceded by a predelay and
followed by a postdelay. The associated amplifier is
unblanked if it is in pulse mode and the phase is
set, both at the beginning of the predelay. The
associated amplifier is blanked at the end of the
postdelay if it is in pulse mode.

Arguments: width is the duration of the pulse, in seconds.

phase is a 90° multiplier for the first- decoupler
phase. The value must be a real- time variable (v1
to v42, oph, etc), a real- time constant (zero, one,
etc), or a real- time table (t1 to t60).

RG1 is the duration of the predelay, in seconds.

RG2 is the duration of the postdelay, in seconds.
Examples: dec4rgpulse(pp,v3,rof1,rof2);

dec4rgpulse(pp,zero,1.0e6,0.2e6);

decshaped_pulse Perform shaped pulse on first decoupler

Syntax: decshaped_pulse(pattern,width,phase,RG1,RG2)
pattern; /* name of .RF text file */
double width; /* duration of pulse, seconds

Related: decpulse Perform pulse with
assigned values on first
decoupler

decrgpulse Perform pulse on first
decoupler

dec2rgpulse Perform pulse on second
decoupler

dec3rgpulse Perform pulse on third
decoupler

dec4shaped_pulse Perform shaped pulse on
fourth decoupler

obspulse Perform pulse with
assigned values on observe
channel

pulse Perform pulse with
assigned values on observe
channel

rgpulse Perform pulse on observe
channel

shaped_pulse Perform shaped pulse on
observe channel

simshaped_pulse Perform simultaneous
shaped pulses, observe and
first decoupler

simpulse Perform simultaneous
pulses, observe and first
decoupler

230 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

*/
codeint phase; /* real-time
quadrature-phase multiplier for pulse */
double RG1; /* duration of predelay,
seconds */
double RG2; /* duration of postdelay,
seconds */

Description: Set the quadrature phase, gate the first decoupler
on and off at the current power level with amplifier
unblanking and blanking, and apply a shaped- pulse
pattern. decshaped_pulse is preceded by a predelay
and followed by a postdelay. The associated
amplifier is unblanked if it is in pulse mode and
the phase is set, both at the beginning of the
predelay. The associated amplifier is blanked at the
end of the postdelay if it is in pulse mode.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .RF extension to store
the decoupling pattern.

width is the duration of the pulse, in seconds.

phase is a 90° multiplier for the first- decoupler
phase. The value must be a real- time variable (v1
to v42, oph, etc), a real- time constant (zero, one,
etc), or a real- time table (t1 to t60).

RG1 is the duration of the predelay, in seconds.

RG2 is the duration of the postdelay, in seconds.
Examples: decshaped_pulse("sinc",p1,v5,rof1,rof2);

Related: decrgpulse Perform pulse on first
decoupler

dec2shaped_pulse Perform shaped pulse on
second decoupler

dec3shaped_pulse Perform shaped pulse on
third decoupler

dec4shaped_pulse Perform shaped pulse on
fourth decoupler

rgpulse Perform pulse on observe
channel

shaped_pulse Perform shaped pulse on
observe channel

simshaped_pulse Perform simultaneous
shaped pulses, observe and
first decoupler

simpulse Perform simultaneous
pulses, observe and first
decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 231

dec2shaped_pulse Perform shaped pulse on second decoupler

Syntax: dec2shaped_pulse(pattern,width,phase,RG1,RG2)
pattern; /* name of .RF text file */
double width; /* duration of pulse, seconds
*/
codeint phase; /* real-time
quadrature-phase multiplier for pulse */
double RG1; /* duration of predelay,
seconds */
double RG2; /* duration of postdelay,
seconds */

Description: Set the quadrature phase, gate the second decoupler
on and off at the current power level with amplifier
unblanking and blanking, and apply a shaped- pulse
pattern. dec2shaped_pulse is preceded by a
predelay and followed by a postdelay. The
associated amplifier is unblanked if it is in pulse
mode and the phase is set, both at the beginning of
the predelay. The associated amplifier is blanked at
the end of the postdelay if it is in pulse mode.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .RF extension to store the
decoupling pattern.

width is the duration of the pulse, in seconds.

phase is a 90° multiplier for the first- decoupler
phase. The value must be a real- time variable (v1
to v42, oph, etc), a real- time constant (zero, one,
etc), or a real- time table (t1 to t60).

RG1 is the duration of the predelay, in seconds.

RG2 is the duration of the postdelay, in seconds.
Examples: decs2haped_pulse("sinc",p1,v5,rof1,rof2);

Related: dec2rgpulse Perform pulse on second
decoupler

decshaped_pulse Perform shaped pulse on
first decoupler

dec3shaped_pulse Perform shaped pulse on
third decoupler

dec4shaped_pulse Perform shaped pulse on
fourth decoupler

rgpulse Perform pulse on observe
channel

shaped_pulse Perform shaped pulse on
observe channel

sim3shaped_pulse Perform simultaneous
shaped pulses, observe, first
and second decouplers

sim3pulse Perform simultaneous
pulses, observe, first and
second decouplers

232 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

dec3shaped_pulse Perform shaped pulse on third decoupler

Syntax: dec3shaped_pulse(pattern,width,phase,RG1,RG2)
pattern; /* name of .RF text file */
double width; /* duration of pulse in sec
*/
codeint phase; /* real-time quadrature
phase multiplier for pulse */
double RG1; /* duration of predelay in
sec */
double RG2; /* duration of postdelay in
sec */

Description: Set the quadrature phase, gate the third decoupler
on and off at the current power level with amplifier
unblanking and blanking, and apply a shaped- pulse
pattern. dec3shaped_pulse is preceded by a
predelay and followed by a postdelay. The
associated amplifier is unblanked if it is in pulse
mode and the phase is set, both at the beginning of
the predelay. The associated amplifier is blanked at
the end of the postdelay if it is in pulse mode.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .RF extension to store the
decoupling pattern.

width is the duration of the pulse, in seconds.

phase is a 90° multiplier for the first- decoupler
phase. The value must be a real- time variable (v1
to v42, oph, etc), a real- time constant (zero, one,
etc), or a real- time table (t1 to t60).

RG1 is the duration of the predelay, in seconds.

RG2 is the duration of the postdelay, in seconds.
Examples: dec3shaped_pulse("sinc",p1,v5,rof1,rof2);

Related: dec3rgpulse Perform pulse on third
decoupler

decshaped_pulse Perform shaped pulse on
first decoupler

dec2shaped_pulse Perform shaped pulse on
second decoupler

dec4shaped_pulse Perform shaped pulse on
fourth decoupler

rgpulse Perform pulse on observe
channel

shaped_pulse Perform shaped pulse on
observe channel

sim4shaped_pulse Perform simultaneous
shaped pulses, observe,
first, second and third
decouplers

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 233

dec4shaped_pulse Perform shaped pulse on fourth decoupler

Syntax: dec4shaped_pulse(pattern,width,phase,RG1,RG2)
pattern; /* name of .RF text file */
double width; /* duration of pulse, seconds
*/
codeint phase; /* real-time
quadrature-phase multipler for pulse */
double RG1; /* duration of predelay in
sec */
double RG2; /* duration of postdelay in
sec */

Description: Set the quadrature phase, gate the first decoupler
on and off at the current power level with amplifier
unblanking and blanking, and apply a shaped- pulse
pattern. dec4shaped_pulse is preceded by a
predelay and follwed by a postdelay. The associated
amplifier is unblanked if it is in pulse mode and
the phase is set, both at the beginning of the
predelay. The associated amplifier is blanked at the
end of the postdelay if it is in pulse mode.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .RF extension to store the
decoupling pattern.

width is the duration of the pulse, in seconds.

phase is a 90° multiplier for the first- decoupler
phase. The value must be a real- time variable (v1
to v42, oph, etc), a real- time constant (zero, one,
cc), or a real- time table (t1 to t60).

RG1 is the duration of the predelay, in seconds.
Examples: dec4shaped_pulse("sinc",p1,v5,rof1,rof2);

sim4pulse Perform simultaneous
pulses, observe, first,
second and third
decouplers

Related: dec4rgpulse Perform pulse on fourth
decoupler

decshaped_pulse Perform shaped pulse on
first decoupler

dec2shaped_pulse Perform shaped pulse on
second decoupler

dec3shaped_pulse Perform shaped pulse on
third decoupler

rgpulse Perform pulse on observe
channel

shaped_pulse Perform shaped pulse on
observe channel

234 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

decspinlock Perform waveform spinlock on first decoupler

Syntax: decspinlock(pattern,90_pulselength,tipangle_resoln,
phase,ncycles)
char *pattern; /* name of .DEC text
file */
double 90_pulselength; /* 90-deg pulse
length in sec */
double tipangle_resoln; /* resolution of tip
angle */
codeint phase; /* real-time
quadrature-phase multiplier*/
int ncylces; /* number of cycles
to execute */

Description: Execute a spinlock with an integer number of cycles
of programmable decoupling on the first decoupler
under waveform control. decspinlock unblanks and
blanks the associated amplifier and gates the first
decoupler on and off for patterns without an
explicit gate column. It is a good practice to
unblank the associated amplifier with decunblank,
at least 2.0 µs before decspinlock.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90°.
Often 90_pulselength is set equal 1/dmf where dmf
is a step rate.

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

For many patterns, 90_pulselength is the actual
90° pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case, tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,
tipangle_resoln is nominally 90 and elements in
the pattern have tip- angle durations that are
multiples of 90.

For some patterns, 90_pulselength is the actual
90° pulse length but elements of the pattern have

simshaped_pulse Perform simultaneous
shaped pulses, observe and
first decoupler

simpulse Perform simultaneous
pulses, observe and first
decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 235

arbitrary flip angles that are multiples of a
tipangle_resoln, that is less than 90° (c.f. 1.0°).
In this case, tipangle_resoln is the divisor (c.f.
1.0) and for good practice it is also a divisor of 90.0.

ncycles is the number of times that the spinlock
pattern is to be executed.

Examples: decspinlock("mlev16",p190,dres,v1,30);
decspinlock(spinlk,pp90,dres,v1,cycles);

dec2spinlock Perform waveform spinlock on second decoupler

Syntax: dec2spinlock(pattern,90_pulselength,tipangle_resoln,
 phase,ncycles)
char *pattern; /* name of .DEC text
file */
double 90_pulselength; /* 90-deg pulse
length in sec */
double tipangle_resoln; /* resolution of tip
angle */
codeint phase; /* real-time
quadrature-phase multiplier*/
int ncylces; /* number of cycles
to execute */

Description: Execute a spinlock with an integer number of cycles
of programmable decoupling on the second
decoupler under waveform control. dec2spinlock
unblanks and blanks the associated amplifier and
gates the first decoupler on and off for patterns
without an explicit gate column. It is a good
practice to unblank the associated amplifier with
dec2unblank, at least 2.0 µs before dec2spinlock.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90°.
Often 90_pulselength is set equal 1/dmf where
dmf is a step rate.

Related: dec2spinlock Perform waveform spinlock on
second decoupler

dec3spinlock Perform waveform spinlock on
third decoupler

dec4spinlock Perform waveform spinlock on
fourth decoupler

spinlock Perform waveform spinlock on
observe channel

236 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

For many patterns, 90_pulselength is the actual
90° pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case, tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,
tipangle_resoln is nominally 90 and elements in
the pattern have tip- angle durations that are
multiples of 90.

For some patterns, 90_pulselength is the actual
90° pulse length but elements of the pattern have
arbitrary flip angles that are multiples of a
tipangle_resoln, that is less than 90° (c.f. 1.0°).
In this case tipangle_resoln is the divisor (c.f. 1.0)
and for good practice it is also a divisor of 90.0.

ncycles is the number of times that the spinlock
pattern is to be executed.

Examples: dec2spinlock("mlev16",p190,dres,v1,30);
dec2spinlock(spinlk,pp90,dres,v1,cycles);

dec3spinlock Perform waveform spinlock on third decoupler

Syntax: dec3spinlock(pattern,90_pulselength,tipangle_resoln,
 phase,ncycles)
char *pattern; /* name of .DEC text
file */
double 90_pulselength; /* 90-deg pulse
length in sec */
double tipangle_resoln; /* resolution of tip
angle */
codeint phase; /* real-time
quadrature-phase multiplier */
int ncylces; /* number of cycles
to execute */

Description: Execute a spinlock with an integer number of cycles
of programmable decoupling on the third decoupler
under waveform control. dec3spinlock unblanks
and blanks the associated amplifier and gates the
first decoupler on and off for patterns without an

Related: decspinlock Perform waveform spinlock on
first decoupler

dec3spinlock Perform waveform spinlock on
third decoupler

dec4spinlock Perform waveform spinlock on
fourth decoupler

spinlock Perform waveform spinlock on
observe channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 237

explicit gate column. It is a good practice to
unblank the associated amplifier with dec3unblank,
at least 2.0 µs before dec3spinlock.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90°.
Often 90_pulselength is set equal 1/dmf where dmf
is a step rate.

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

For many patterns, 90_pulselength is the actual
90° pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case, tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,
tipangle_resoln is nominally 90 and elements in
the pattern have tip- angle durations that are
multiples of 90.

For some patterns, 90_pulselength is the actual
90° pulse length but elements of the pattern have
arbitrary flip angles that are multiples of a
tipangle_resoln, that is less than 90.0° (c.f. 1.0°).
In this case, tipangle_resoln is the divisor (c.f.
1.0) and for good practice it is also a divisor of 90.0.

ncycles is the number of times that the spinlock
pattern is to be executed.

Examples: dec3spinlock("mlev16",p190,dres,v1,30);
dec3spinlock(spinlk,pp90,dres,v1,cycles);

dec4spinlock Perform waveform spinlock on fourth decoupler

Syntax: dec4spinlock(pattern,90_pulselength,tipangle_resoln,
 phase,ncycles)
char *pattern; /* name of .DEC text
file */

Related: decspinlock Perform waveform spinlock
on first decoupler

dec2spinlock Perform waveform spinlock
on second decoupler

dec4spinlock Perform waveform spinlock
on fourth decoupler

spinlock Perform waveform spinlock
on observe channel

238 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

double 90_pulselength; /* 90-deg pulse
length in sec */
double tipangle_resoln; /* resolution of tip
angle */
codeint phase; /* real-time
quadrature-phase multiplier */
int ncylces; /* number of cycles
to execute */

Description: Execute a spinlock with an integer number of cycles
of programmable decoupling on the first decoupler
under waveform control. dec4spinlock unblanks
and blanks the associated amplifier and gates the
first decoupler on and off for patterns without an
explicit gate column. It is a good practice to
unblank the associated amplifier with dec4unblank,
at least 2.0 µs before dec4spinlock.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90°.
Often 90_pulselength is set equal 1/dmf where dmf
is a step rate.

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

For many patterns, 90_pulselength is the actual
90° pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case, tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,
tipangle_resoln is nominally 90 and elements in
the pattern have tip- angle durations that are
multiples of 90.

For some patterns ‘cc is the actual 90° pulse length
but elements of the pattern have arbitrary flip
angles that are multiples of a tipangle_resoln,
that is less than 90.0° (c.f. 1.0°). In this case,
tipangle_resoln is the divisor (c.f. 1.0) and for
good practice it is also a divisor of 90.0.

ncycles is the number of times that the spinlock
pattern is to be executed.

Examples: dec4spinlock("mlev16",p190,dres,v1,30);
dec4spinlock(spinlk,pp90,dres,v1,cycles);

Related: decspinlock Perform waveform spinlock on
first decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 239

decstepsize Set small-angle phase stepsize of first decoupler

Syntax: decstepsize(step_size)
double step_size; /* small-angle phase
stepsize */

Description: Set the small- angle phase stepsize of the first
decoupler. The dcplrphase statement sets the
small- angle phase as a product of the current
step_size and a real- time multiplier. If
decstepsize is not used, the default step_size is
90°. The decstepsize statement can be used
multiple times in a sequence.

The small- angle phase of the DD2 MR system has a
phase resolution of 360.0/65536 (~0.0055°). The
VNMRS has a phase resolution of 360.0/8192
(~0.044°) and the small- angle phase is set to the
nearest step. Consult the configuration file to
determine which transmitter is present.

Arguments: step_size is a value, in degrees, corresponding to
one unit of the real- time phase multiplier.

Examples: decstepsize(30.0);

dec2stepsize Set small-angle phase stepsize of second decoupler

Syntax: dec2stepsize(step_size)
double step_size; /* small angle phase
stepsize */

Description: Set the small- angle phase stepsize of the second
decoupler. The dcplr2phase statement sets the
small- angle phase as a product of step_size and a
real- time multiplier. If dec2stepsize is not used,

dec2spinlock Perform waveform spinlock on
second decoupler

dec3spinlock Perform waveform spinlock on
third decoupler

spinlock Perform waveform spinlock on
observe channel

Related: dcplrphase Set small- angle phase of first
decoupler

dec2stepsize Set small- angle phase stepsize of
second decoupler

dec3stepsize Set small- angle phase stepsize of
third decoupler

dec4stepsize Set small- angle phase stepsize of
fourth decoupler

obsstepsize Set small- angle phase stepsize of
observe channel

stepsize Set small- angle phase stepsize of
any channel

240 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

the default step_size is 90°. The dec2stepsize
statement can be used multiple times in a sequence.

The small- angle phase of the DD2 MR system has a
phase resolution of 360.0/65536 (~0.0055°). The
VNMRS has a phase resolution of 360.0/8192
(~0.044°) and the small- angle phase is set to the
nearest step. Consult the configuration file to
determine which transmitter is present.

Arguments: step_size is a value, in degrees, corresponding to
one unit of the real- time phase multiplier. .

Examples: dec2stepsize(30.0);

dec3stepsize Set small-angle phase stepsize of third decoupler

Syntax: dec3stepsize(step_size)
double step_size; /* small-angle phase
stepsize */

Description: Set the small angle phase stepsize of the third
decoupler. The dcplr3phase statement sets the
small- angle phase as a product of step_size and a
real- time multiplier. If dec3stepsize is not used,
the default step_size is 90°. The dec3stepsize
statement can be used multiple times in a sequence.

The small- angle phase of the DD2 MR system has a
phase resolution of 360.0/65536 (~0.0055°). The
VNMRS has a phase resolution of 360.0/8192
(~0.044°) and the small- angle phase is set to the
nearest step. Consult the configuration file to
determine which transmitter is present.

Arguments: step_size is a value, in degrees, corresponding to
one unit of the real- time phase multiplier.

Examples: dec3stepsize(30.0);

Related: dcplr2phase Set small- angle phase of second
decoupler

decstepsize Set small- angle phase stepsize
of first decoupler

dec3stepsize Set small- angle phase stepsize
of third decoupler

dec4stepsize Set small- angle phase stepsize
of fourth decoupler

obsstepsize Set small- angle phase stepsize
of observe channel

stepsize Set small- angle phase stepsize
of any channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 241

dec4stepsize Set small-angle phase stepsize of fourth decoupler

Syntax: dec3stepsize(step_size)
double step_size; /* small-angle phase
stepsize */

Description: Sets the small- angle phase stepsize of the fourth
decoupler. The dcplr4phase statement sets the
small- angle phase as a product of step_size and a
real- time multiplier. If dec4stepsize is not used,
the default step_size is 90°. The dec4stepsize
statement can be used multiple times in a sequence.

The small- angle phase of VNMRS may have a phase
resolution of 360.0/65536 (~0.0055°) or 360.0/8192
(~0.044°) depending on the available transmitter,
and the small- angle phase is set to the nearest step.
Consult the configuration file to determine which
transmitter is present.

Arguments: step_size is a value, in degrees, corresponding to
one unit of the real- time phase multiplier.

Examples: dec4stepsize(30.0);

decunblank Unblank amplifier of first decoupler

Syntax: decunblank()

Related: dcplr3phase Set small- angle phase of third
decoupler

decstepsize Set small- angle phase stepsize of
first decoupler

dec2stepsize Set small- angle phase stepsize of
second decoupler

dec4stepsize Set small- angle phase stepsize of
fourth decoupler

obsstepsize Set small- angle phase stepsize of
observe channel

stepsize Set small- angle phase stepsize of
any channel

Related: dcplr4phase Set small- angle phase of fourth
decoupler

decstepsize Set small- angle phase stepsize
of first decoupler

dec2stepsize Set small- angle phase stepsize
of second decoupler

dec3stepsize Set small- angle phase stepsize
of third decoupler

obsstepsize Set small- angle phase stepsize
of observe channel

stepsize Set small- angle phase stepsize
of any channel

242 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Description: Enables the amplifier for the first decoupler if the
amplifier is in pulse mode. For pulse mode.
decunblank is required at least 2.0 µs before pulses,
spinlocks, and decoupling periods.

For continuous mode, decunblank is the default and
the statement is not needed. The first decoupler is
in continuous mode by default unless it has an
associated receiver or is in the frequency band of
another observe channel, for which it is in pulse
mode.

To place the first decoupler in pulse mode, create
the parameter ampmode and set the appropriate
character to 'p'.

dec2unblank Unblank amplifier of second decoupler

Syntax: dec2unblank()

Description: Enable the amplifier for the second decoupler if the
amplifier is in pulse mode. For pulse mode,
dec2unblank is required at least 2.0 µs before
pulses, spinlocks, and decoupling periods.

For continuous mode, dec2unblank is the default
and the statement is not needed. The first
decoupler is in continuous mode by default unless
it has an associated receiver or is in the frequency
band of another observe channel, for which it is in
pulse mode.

To place the first decoupler in pulse mode, create
the parameter ampmode and set the appropriate
character to 'p'.

Related: decblank Blank amplifier of first decoupler
dec2unblank Unblank amplifier of second

decoupler
dec3unblank Unblank amplifier of third

decoupler
dec4unblank Unblank amplifier of fourth

decoupler
obsunblank Unblank amplifier of observe

channel

Related: dec2blank Blank amplifier of second
decoupler

decunblank Unblank amplifier of first
decoupler

dec3unblank Unblank amplifier of third
decoupler

dec4unblank Unblank amplifier of fourth
decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 243

dec3unblank Unblank amplifier of third decoupler

Syntax: dec3unblank()

Description: Enable the amplifier for the second decoupler if the
amplifier is in pulse mode. For pulse mode,
dec3unblank is required at least 2.0 µs before
pulses, spinlocks, and decoupling periods.

For continuous mode, dec3unblank is the default
and the statement is not needed. The second
decoupler is in continuous mode by default unless
it has an associated receiver or is in the frequency
band of another observe channel, for which it is in
pulse mode.

To place the first decoupler in pulse mode, create
the parameter ampmode and set the appropriate
character to 'p'.

dec4unblank Unblank amplifier of fourth decoupler

Syntax: dec4unblank()

Description: Enable the amplifier for the first decoupler if the
amplifier is in pulse mode. For pulse mode,
dec4unblank is required at least 2.0 µs before
pulses, spinlocks, and decoupling periods.

For continuous mode, dec4unblank is the default
and the statement is not needed. The first
decoupler is in continuous mode by default unless
it has an associated receiver or is in the frequency
band of another observe channel, for which it is in
pulse mode.

To place the first decoupler in pulse mode, create
the parameter ampmode and set the appropriate
character to 'p'.

obsunblank Unblank amplifier of observe
channel

Related: dec3blank Blank amplifier of
third decoupler

decunblank Unblank amplifier of
first decoupler

dec2unblank Unblank amplifier of
second decoupler

dec4unblank Unblank amplifier of
fourth decoupler

obsunblank Unblank amplifier of
observe channel

Related: dec4blank Blank amplifier of fourth decoupler

244 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

delay Execute time delay

Syntax: delay(time)
double time; /* duration of delay,
seconds */

Description: Execute a delay for a specified number of seconds.

Arguments: time specifies the duration of the delay, in seconds.
The DD2 MR system transmitter has a 25 ns
minimum step and 12.5 ns resolution. The VNMRS
system will have a 50 ns step and 12.5 ns
resolution. Consult the configuration file to
determine which transmitter is present.

Examples: delay(d1);
delay(d2/2.0);

divn Divide real-time integer values

Syntax: divn(vi,vj,vk)
codeint vi; /* real-time variable for
dividend */
codeint vj; /* real-time variable for
divisor */
codeint vk; /* real-time variable for
quotient */

Description: Set the integer value of vk equal to the value of vi
divided by the value of vj. The remainder of the
dvision is truncated.

Arguments: vi contains the dividend, vj contains the divisor,
and vk contains the resulting quotient. All three are
real- time variables (v1 to v42, oph, etc).

Examples: divn(v2,v3,v4);

decunblank Unblank amplifier of first decoupler
dec2unblank Unblank amplifier of second

decoupler
dec3unblank Unblank amplifier of third

decoupler
obsunblank Unblank amplifier of observe

channel

Related: delay Execute time delay
hsdelay Execute time delay with optional

homospoil pulse
vdelay Execute time delay with fixed timebase

and real- time count

Related: add Add real- time integer values
assign Assign real- time integer value using

real- time integer

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 245

dps_off Turn off graphical display of statements

Syntax: dps_off()

Description: Turn off dps display of statements. Pulse
statements following dps_off are not shown in the
graphical display.

dps_on Turn on graphical display of statements

Syntax: dps_on()

Description: Turn on dps display of statements. Pulse statements
following dps_on are shown in the graphical display.

dps_show Display pulse and delay icons in graphical display

Syntax: (1)
dps_show("delay",time)
double time; /* delay, seconds */

Syntax: (2) dps_show("pulse",channel,label,width)
char *channel; /* "obs", "dec",
"dec2",or "dec3" */
char *label; /* text label selected
by user */

dbl Double real- time integer value
decr Decrement real- time integer value
hlv Assign half the value of real- time

integer
incr Increment real- time integer value
initval Assign real- time integer value using

numeric value
mod2 Assign real- time integer value modulo

2
mod4 Assign real- time integer value modulo

4
modn Assign real- time integer value modulo

n
mult Multiply real- time integer values
sub Subtract real- time integer values

Related: dps_on Turn on graphical display of statements
dps_show Display pulse and delay icons in

graphical display
dps_skip Skip graphical display of next

statement

Related: dps_off Turn off graphical display of
statements

dps_show Display pulse and delay icons in
graphical display

dps_skip Skip graphical display of next
statement

246 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

double width; /* pulse length, seconds
*/

Syntax: (3)
dps_show("shaped_pulse",channel,label,width)
char *channel; /* "obs", "dec",
"dec2",or "dec3" */
char *label; /* text label selected
by user */
double width; /* pulse length, seconds
*/

Syntax: (4)
dps_show("simpulse",label_of_obs,width_of_ob
s,char *label_of_obs; /* text label
selected by user */
double width_of_obs; /* pulse length,
seconds */
char *label_of_dec; /* text label selected
by user */
double width_of_dec; /* pulse length,
seconds */

Syntax: (5)
dps_show("simshaped_pulse",label_of_obs,
width_of_obs,label_of_dec,width_of_dec)
char *label_of_obs; /* text label selected
by user */
double width_of_obs; /* pulse length,
seconds */
char *label_of_dec; /* text label selected
by user */
double width_of_dec; /* pulse length,
seconds */

Syntax: (6)
dps_show("sim3pulse",label_of_obs,width_of_o
bs,
label_of_dec,width_of_dec,label_of_dec2,widt
h_of_dec2)
char *label_of_obs; /* text label selected
by user */
double width_of_obs; /* pulse length,
seconds */
char *label_of_dec; /* text label selected
by user */
double width_of_dec; /* pulse length,
seconds */
char *label_of_dec2; /* text label selected
by user */
double width_of_dec2; /* pulse length,
seconds */

Syntax: (7)
dps_show("sim3shaped_pulse",label_of_obs,wid
th_of_obs,
label_of_dec,width_of_dec,label_of_dec2,widt
h_of_dec2)
char *label_of_obs; /* text label selected
by user */

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 247

double width_of_obs; /* pulse length,
seconds */
char *label_of_dec; /* text label selected
by user */
double width_of_dec; /* pulse length,
seconds */
char *label_of_dec2; /* text label selected
by user */
double width_of_dec2; /* pulse length,
seconds */

Syntax: (8)
dps_show("zgradpulse",value,delay)
double value; /* gradient amplitude, z
channel, DAC units */
double delay; /* gradient-pulse length,
seconds */

Syntax: (9)
dps_show("rgradient",channel,value)
char channel; /* 'X', 'x', 'Y', 'y', 'Z',
or 'z' */
double value; /* gradient amplitude, DAC
units */

Syntax: (10)
dps_show("shapedgradient",pattern,width,amp,
channel,loops, wait)
char *pattern; /* pattern name */
double width; /* gradient-pulse length,
seconds */
double amp; /* gradient amplitude, DAC
units */
char channel; /* gradient axis 'x', 'y',
or 'z' */
int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */

Description: Draw icons for pulses, gradient pulses, and delays
in the dps graphical display. The statement name is
always the first argument, followed by values for
labels associated with the arguments of the
statement. Use the dps_off statement before and
the dps_on statement after dps_show.

Syntax 1 draws a line to represent a delay.

Syntax 2 draws a pulse icon.

Syntax 3 draws a shaped pulse icon.

Syntax 4 draws a pulse icon for the observe and
first decoupler.

Syntax 5 draws a shaped pulse icon for observe and
first decoupler.

Syntax 6 draws a pulse icon for observe, first and
second decouplers.

Syntax 7 draws a shaped pulse icon for observe,
first and second decouplers.

248 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Syntax 8 draws a gradient pulse icon on the z
channel.

Syntax 9 draws a gradient pulse icon on the
specified channel.

Syntax 10 draws a shaped gradient pulse icon on a
specified channel.

Examples: dps_show("delay",d1);
dps_show("pulse","obs","obspulse",p1);
dps_show("pulse","dec","pw",pw);
dps_show("shaped_pulse","obs","shaped",p1*2)
;
dps_show("shaped_pulse","dec2","gauss",pw);
dps_show("simpulse","obs_pulse",p1,"dec_puls
e",p2);
dps_show("simshaped_pulse","gauss",p1,"gauss
",p2);
dps_show("sim3pulse","p1",p1,"p2",p2,"p1*2",
p1*2);
dps_show("zgradpulse",123.0,d1);
dps_show("rgradient",'x',1234.0);
dps_show("shapedgradient","sinc",1000.0,3000
.0,'y',1,NOWAIT);

Related: delay Execute a time delay
dps_off Turn off graphical

display of statements
dps_on Turn on graphical

display of statements
dps_skip Skip graphical

display of next
statement

pulse Perform pulse with
assigned values on
observe channel

rgradient Set DAC level of any
one gradient axis

shaped_pulse Perform shaped
pulse on observe
channel

shapedgradient Perform shaped
gradient pulse on
any one axis

simpulse Perform
simultaneous pulses,
observe and first
decoupler

sim3pulse Perform
simultaneous pulses,
observe, first and
second decouplers

simshaped_pulse Perform
simultaneous shaped
pulses, observe and
first decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 249

dps_skip Skip graphical display of next statement

Syntax: dps_skip()

Description: Skip the dps display of the next statement. The
statement following dps_skip is not shown in the
graphical display.

sim3shaped_pulse Perform
simultaneous shaped
pulses, observe, first
and second
decouplers

zgradpulse Perform gradient
pulse on the z
channel

Related: dps_off Turn off graphical
display of statements

Dps_on Turn on graphical
display of statements

dps_show Display pulse and
delay icons in
graphical display

250 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

E, F

elsenz Execute a real-time else statement

Syntax: elsenz(vi)
codeint vi; /* real-time variable tested as
0 or not */

Description: Placed between the ifzero and endif statements to
execute succeeding statements if vi is non- zero.
The elsenz statement can be omitted if it is not
required. It is also not necessary for any statements
to appear between the ifzero and the elsenz, or
between the elsenz and the endif statements.

Arguments: vi is a real- time variable (v1 to v42, oph, etc)
tested for either being zero or non- zero.

Examples: elsenz(v2);

endacq End explicit acquisition

Syntax: endacq()

Description: Finalize the digital receiver after the explicit use of
one or more sample statements to provide explicit
acquisition of np points. The endacq statement
takes no time itself but a 200 ns housekeeping delay
must pass before the next scan or before the next
execution of startacq. Usually the housekeeping
delay occupies the d1 period of the next scan and
sets a minimum value for d1.

If an endacq statement is omitted, it will be
inserted automatically at run- time. However, it is a
good practice to use endacq as there may be some
ambiguity as to where it is inserted automatically.
For a single use of sample(np/(2.0*sw), the endacq

elsenz Execute a real-time else statement
endhardloop End hardware loop
endacq End explicit acquisition
endacq_obs End explicit acquisition in parallel section
endacq_rcvr End explicit acquisition in parallel section
endif Execute a real-time endif statement
endloop End real-time loop
endmsloop End switchable multislice loop
endpeloop End switchable phase-encode loop
exe_grad_rotation Set oblique gradient-coordinate rotation angles in real-time
F_initval Always assign real-time variable using numeric value

Related: endif Execute a real- time
endif statement

ifzero Execute a real- time
equal- zero

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 251

statement should immediately follow sample. For
windowed, explicit acquisition, endacq is placed
immediately after the endloop statement that has
produced np points. For compressed acquisition,
startacq-endacq pairs should surround each
instance of sample(np/2.0*sw).

Examples: endacq();

endacq_obs End explicit acquisition in parallel section

Syntax: endacq_obs()

Description: Analogous to the endacq statement but to be used
in "obs" parallel sections of a pulse sequence.

endacq_rcvr End explicit acquisition in parallel section

Syntax: endacq_rcvr()

Description: Analogous to the endacq statement but to be used
in "rcvr" parallel sections of a pulse sequence.

Related: acquire Acquire data
explicitly

rcvroff Turn off receiver
and unblank observe
amplifier

rcvron Turn on receiver and
blank observe
amplifier

sample Acquire data
explicitly during
time delay

startacq Initialize explicit
acquisition

Related: acquire_obs Acquire data explicitly in
parallel section

acquire_rcvr Acquire data explicitly in
parallel section

startacq_obs Initialize explicit
acquisition in parallel
section

startacq_rcvr Initialize explicit
acquisition in parallel
section

endacq_rcvr End explicit acquisition
in parallel section

parallelacquire_obs Acquire data explicitly in
parallel section

parallelacquire_rcvr Acquire data explicitly in
parallel section

252 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

endhardloop End hardware loop (obsolete)

Syntax: endhardloop(count)
int count; /* real-time variable with
loop count */

Description: End a real- time loop with count repetitions that
begin with the starthardloop statement. This
statement is identical to the endloop statement,
except that the loop index is not accessible. The
endhardloop statement is obsolete. Use the loop -
endloop statements instead.

Arguments: count is the number of loop repetitions. It must be
a real- time variable (v1 to v42) or an index (id2,
id3 etc). The index of endhardloop is not accessible.

endif Execute a real-time endif statement

Syntax: endif(vi)
codeint vi; /* real-time variable to test as
0 or not */

Description: End conditional execution started by the ifzero
and elsenz statements.

Arguments: vi is a real- time variable (v1 to v42, oph, etc) that
is tested for either being zero or non- zero.

Examples: endif(v4);

Related: acquire_obs Acquire data explicitly in
parallel section

acquire_rcvr Acquire data explicitly in
parallel section

startacq_obs Initialize explicit
acquisition in parallel
section

startacq_rcvr Initialize explicit
acquisition in parallel
section

endacq_obs End explicit acquisition
in parallel section

parallelacquire_obs Acquire data explicitly in
parallel section

parallelacquire_rcvr Acquire data explicitly in
parallel section

Related: endloop End real- time loop
loop Start real- time loop
starthardloop Start hardware loop

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 253

endloop End real-time loop

Syntax: endloop(index)
codeint index; /* real-time variable index
*/

Description: End a loop that was started by a loop statement.

Arguments: index is a real- time variable used as an index to
keep track of the number of times through the loop.
It must be the same variable as that used in loop
and its value should not be altered by any
statements within the loop.

Examples: endloop(v2);

endmsloop End switchable multislice loop

Syntax: endmsloop(state,apv2)

Syntax: char state; /* compressed or standard */

Syntax: codeint apv2; /* current counter value */

Description: End a loop that was started by a msloop statement.

Arguments: state is either 'c' to designate the compressed
mode, or 's' to designate the standard arrayed
mode. It should be the same value that was in the
state argument in the msloop statement that it is
ending.

apv2 is a real- time variable used as an index to
keep track of the number of times through the loop.
It must be the same as that in msloop and not be
altered by any statements within the loop.

Examples: endmsloop(seqcon[1],v12);

Related: elsenz Execute a real- time
else statement

ifzero Execute a real- time
equal- zero

Related: endhardloop End hardware loop
loop Start real- time loop
starthardloop Start hardware loop

Related: msloop Start switchable
multislice loop

endloop End real- time loop
endpeloop End switchable

phase- encode loop
loop Start real- time loop

254 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

endpeloop End switchable phase-encode loop

Syntax: endpeloop(state,apv2)
char state; /* compressed or standard */
codeint apv2; /* real-time variable index
*/

Description: End a loop that was started by a peloop statement.

Arguments: state is either 'c' to designate the compressed
mode, or 's' to designate the standard arrayed
mode. It should be the same value that was in the
state argument in the peloop statement that it is
ending.

apv2 is a real- time variable used as an index to
keep track of the number of times through the loop.
It must be the same as that in peloop and not be
altered by any statements within the loop.

Examples: endpeloop(seqcon[1],v12);

exe_grad_rotation Set oblique gradient-coordinate rotation angles in real-time

Syntax: exe_grad_rotation()

Description: Set user- defined, oblique Euler rotation angles from
a set of values defined by the statement
create_angle_list and selected by
set_angle_list. The angles selected by
set_angle_list can have been indexed in real- time or
run- time mode. All three angles, psi, phi and
theta must be selected separately before
exe_grad_rotation is executed. Otherwise a
default angle is the last value set or 0.0.

Examples: exe_grad_rotation();

loopcheck Check number of
FIDS for compressed
acquisition

peloop Start switchable
phase- encode loop

Related: msloop Start switchable multislice loop
endloop End real- time loop
endmsloop End switchable multislice loop
loop Start real- time loop
loopcheck Check number of FIDS for

compressed acquisition
peloop Start switchable phase- encode loop

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 255

F_initval Always assign real-time variable using numeric value

Syntax: F_initval(number,vi)
double number; /* numeric value used
for initialization */
codeint vi; /* real-time variable
to be initialized */

Description: Initialize a real- time variable using a numeric value.
The numeric input number is rounded to an integer
and assigned to the value of vi. F_initval (unlike
initval) is executed every time it is encountered
in the sequence.

number is the real number, used to assign the value
of the real- time variable.

vi is the real- time variable (v1 to v42, etc) to be
initialized

Examples: F_initval(nt,v8);

Related: exe_grad_rotation Set oblique
gradient- coordinate
rotation angles in
real- time

create_angle_list Create 1D real- time list of
angles

create_rotation_list Create list of oblique
gradient- coordinate
rotation angles

rot_angle Set user- defined oblique
gradient- coordinate
rotation angles

rot_angle_list Set oblique
gradient- coordinate
rotation angles from a list

rotate Set standard oblique
gradient- coordinate
rotation angles

set_angle_list Select angle from a 1D
real- time list

Related: initval Assign real- time variable using
numeric value

256 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

G

getarray Obtain all values from arrayed parameter

Syntax: number=getarray(parname,values)
char *parname; /* name of arrayed
parameter */
double array[]; /* array to contain
values */
return N /* number of elements
in arrayed parameter */

Description: Retrieve all values of a current VnmrJ arrayed
parameter parname. getarray performs a sizeof
on the array and returns the value as the integer
N. This statement is very useful when obtaining
parameter values for the creation of global lists, for
example, statements such as poffset_list and
position_offset_list.

The getarray statement is executed with every
increment of a multidimensional or arrayed
experiment. If getarray is to be used to obtain
values for a global list, you should set protection bit
8 (256) of the arrayed parameter to limit its
execution to the first increment. An example is the
pss parameter, which is used with a compressed
slice- select acquisition. Use the statements
create(pss,real); setprotect(pss,on,256) to
create the protected pss parameter.

Arguments: parname is the name of a numeric parameter in
VnmrJ, from which to obtain the array of values.

values is an arrayed variable in the pulse sequence
to hold the values.

N is an integer return that holds the number of
elements of the arrayed parameter parname.

Examples: double upss[256]; /* declare array
upss */ int uns;
uns = getarray(upss,upss); /* get values from
upss */
poffset_list(upss,gss,uns,v12);

getarray Obtain all values from arrayed parameter
getelem Assign real-time integer using table element
getgradpowerintegral Get gradient-power integrals for X, Y and Z axes
getorientation Read image plane orientation
getstr Obtain value of string parameter
getval Obtain value of numeric parameter

Related: getval Obtain value of numeric parameter
getstr Obtain value of string parameter

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 257

getelem Assign real-time integer using table element

Syntax: getelem(table,index,dest)
codeint table; /* table variable
containing element */
codeint index; /* real-time index to
element */
codeint dest; /* real-time variable to
be assigned */

Description: Get an element from table determined by the value
of index and assign it to a real- time variable dest.
By default, tables area accessed sequentially, once
per scan.

The getelem statement is necessary to access a
table mutiple times within a single scan, for
example, within a pair of real- time loop-endloop
statements, or in a compressed 2D acquisition. The
autoincrement statement, which provided this
capability in earlier software, is now obsolete.

Arguments: table specifies the name of the table (t1 to t60).

index is a real- time variable (v1 to v42, oph, ct,
bsctr, or ssctr) that contains the index of the
desired table element. The first element of a table
has an index of 0.

dest is a real- time variable (v1 to v42, oph, etc)
to which the retrieved table element is assigned.

Examples: getelem(t25,ct,v1);

offsetglist Create offset array from position
and gradient- amplitude array

offsetlist Create offset array from position
and gradient amplitude

poffset_list Create offset array from position
array

position_off
set_list

Create offset array from position
array

putarray Set all values of arrayed parameter
from pulse sequence

putstring Set string parameter from pulse
sequence

putvalue Set numeric parameter from pulse
sequence

Related: loadtable Assign table elements from table
text file

setreceiver Set quadrature receiver phase cycle
from table

settable Assign integer array to table

258 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

getgradpowerintegral Get gradient-power integrals for X, Y and Z axes

Syntax: getgradpowerintegral(power_array)
double power_array[3]; /* gradient power for
X, Y and Z axes */

Description: Get the cumulative gradient power integrals (total
gradient energy) for 3 axes into a three- member
array of double whose elements 0, 1 and 2 contain
power for the X, Y and Z axes respectively. If a
gradient axis is not configured, its corresponding
array element is set to zero. The

Arguments: power_array must be defined as a three- element
C- array of double to hold the output energy values.

Examples: double gradenergy(3);
.
getgradpowerintegral(gradenergy);
printf("X grad energy = %g\n", gradenergy[0];
printf("Y grad energy = %g\n", gradenergy[1];
printf("Z grad energy = %g\n", gradenergy[2];

getorientation Read image plane orientation

Syntax: <error_return =>
getorientation(&char1,&char2,&char3,search_s
tring)
char *char1,*char2,*char3; /* program
variable pointers */
char *search_string; /* pointer to
search string */

Description: Read in and processes the value of a string
parameter, used typically for control of magnetic
field gradients. The source of the string value is
typically a user- created parameter available in the
current parameters of the experiment used to
initiate acquisition.

Arguments: error_return can contain the following values:

error_return is set to zero if getorientation was
successful in finding the parameter given in cc and
reading in the value of that parameter.

cc is set to - 1 if search_string was not empty but
it did not contain the correct characters.

error_return is set to a value greater than zero if
the procedure failed or if the string value is made
up of characters other than n, x, y, and z.

char1, char2, and char3 are user- created program
variables of type char (single characters). The
address operator (&) is used with these arguments

Related: showpowerintegral Show gradient- power
integrals for X, Y and Z axes

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 259

to pass the address, rather than the values of these
variables, to getorientation.

search_string is a literal string that
getorientation will search for in the VnmrJ
parameter set, that is, the parameter name. For
example, if search_string="orient", the value of
parameter orient will be accessed. The value of the
parameter should not exceed three characters and
should only be made up of characters from the set
n, x, y, and z.

The message can't find variable in tree aborts
getorientation. This means that either there is no
string associated with search_string or the
parameter name cannot be found.

Examples: (1) pulsesequence()
{
...
char phase,read,slice;
...
getorientation(&read,&phase,&slice,"orient")
;
...
}
(2) pulsesequence()
{
...
char rd, ph, sl;
int error;
...
error=getorientation(&rd,&ph,&sl,"ort");
...
}

getstr Obtain value of string parameter

Syntax: getstr(parname,string)
char *parname; /* name of string parameter */
char *string; /* variable to contain the
string */

Description: Obtain the value of the current string parameter
parname and set a variable string in the pulse
sequence. If parname is not found in the current
parameter table, string is set to the null string and
the PSG produces a warning message

Arguments: parname is the name of a string parameter in
VnmrJ.

string is a string variable in the pulse sequence to
hold the string.

Examples: char xpol[MAXSTR]; getstr("xpol",xpol);

Related: rgradient Set DAC level of any one gradient
axis

260 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

getval Obtain value of numeric parameter

Syntax: value = getval(parname)
char *parameter_name; /* name of numeric
parameter */

Description: Obtain the value of the current numeric parameter
parname and return its value to a variable value in
the pulse sequence. If parname is not found in the
current parameter table, value is set to zero and
the PSG produces a warning message.

The getval statement can be used as an argument
of another statement in the pulse sequence, to avoid
the need to explicitly define the variable value. The
dps graphical display labels the icon for the
statement with the string value parname.

Arguments: parname is the name of a numeric parameter in
VnmrJ.

value is a double variable in the pulse sequence to
hold the value.

Examples: J=getval("J");
acqtime=getval("at");
delay(getval("mix"));

Related: getarray Obtain all values from arrayed
parameter

getval Obtain value of numeric parameter
putarray Set all values of arrayed parameter

from pulse sequence
putstring Set string parameter from pulse

sequence
putvalue Set numeric parameter from pulse

sequence

Related: getarray Obtain all values from arrayed
parameter

getstr Obtain value of string parameter
putarray Set all values of arrayed parameter

from pulse sequence
putstring Set string parameter from pulse

sequence
putvalue Set numeric parameter from pulse

sequence

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 261

H

hlv Assign half the value of real-time integer

Syntax: hlv(vi,vj)
codeint vi; /* real-time variable for
input */
codeint vj; /* real-time variable for
output */

Description: Set the value of vj equal to the integer part of
one- half of the value of vi. The remainder of the
division is truncated.

Arguments: vi contains the value to be halved and vj contains
the result. Each argument must be a real- time
variable (v1 to v42, oph, etc).

Examples: hlv(v2,v5);

hsdelay Execute time delay with optional homospoil pulse

Syntax: hsdelay(time)
double time; /* delay in sec */

Description: Execute a time delay for a specified number of
seconds that may contain an optional homospoil
pulse on the Z shim gradient. To execute a
homospoil pulse, the hsdelay statement must follow
a status statement and the hs parameter must be
set with 'y' for the character corresponding to the
status period. If the parameter hs is set correctly,
hsdelay inserts a homospoil pulse of length hst
seconds at the beginning of hsdelay.

hlv Assign half the value of real-time integer
hsdelay Execute time delay with optional homospoil pulse

Related: add Add real- time integer values
assign Assign real- time integer value using

real- time integer
dbl Double real- time integer value
decr Decrement real- time integer value
divn Divide real- time integer values
incr Increment real- time integer value
initval Assign real- time integer value using

numeric value
mod2 Assign real- time integer value modulo 2
mod4 Assign real- time integer value modulo 4
modn Assign real- time integer value modulo n
mult Multiply real- time integer values
sub Subtract real- time integer values

262 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

The global parameter gradtype='nnh' configures
the Z shim as a gradient channel and provides an
alternative to status and hsdelay. If gradtype is
set correctly, the statement hsdelay(hst) can be
replaced with the statement
zgradpulse(hst,gzlvl), or the homospoil Z shim
can be turned on and off with rgradient. A value
of gzlvl > 0 turns on the homospoil shim.

Arguments: time specifies the duration of the delay, in seconds.
The DD2 MR system transmitter has a a 25 ns
minimum step and 12.5 ns resolution. Older
systems will have a 50 ns step and 12.5 ns
resolution. Consult the configuration file to
determine which transmitter is present.

Examples: hsdelay(d1);
hsdelay(1.5e-3);

Related: delay Execute a time delay
setstatus Set decoupler status of any

channel
status Set status of decoupler or

homospoil
statusdelay Execute status statement within a

time delay
vdelay Execute a time delay with fixed

timebase and real- time count

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 263

I

ifrtGE Execute real-time greater-than-or-equal

Syntax: ifrtGE(rtarg1,rtarg2,rtarg3);
codeint rtarg1; /* first real-time
variable for comparison */
codeint rtarg2; /* second real-time
variable for comparison */
codeint rtarg3; /* real-time variable to
be set as 0 or not */

Description: Execute succeeding statements if rtarg1 ¡ rtarg2
and then execute the code until an endif(rtarg3)
or an elsenz(rtarg3) is encountered. A matching
endif(rtarg3) is required. An optional
elsenz(rtarg3) may be used.

Arguments: rtarg1, rtarg2, and rtarg3 are real- time
variables.

Examples: ifrtGE(v1,v2,v3);
pulse(pw,v2);
delay(d3);

elsenz(v3);
pulse(2.0*pw,v2);
delay(d3/2.0);

endif(v3);

ifrtGE Execute real-time greater-than-or-equal
ifrtGT Execute real-time greater-than
ifrtLE Execute real-time less-than-or-equal
ifrtLT Execute real-time less-than
ifrtEQ Execute real-time equal
ifrtNEQ Execute real-time not-equal
ifzero Execute real-time equal-zero
incr Increment real-time integer value
init_decpattern Create pattern file for waveform decoupling
init_gradpattern Create pattern file for gradient shape
init_rfpattern Create pattern file for shaped pulse
initval Assign real-time integer value using numeric value

Related: elsenz Execute real- time else statement
endif Execute real- time endif statement
ifrtEQ Execute real- time equal
ifrtGT Execute real- time greater- than
ifrtLE Execute real- time less- than- or- equal
ifrtLT Execute real- time less- than
iftrtNEQ Execute real- time not- equal

264 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

ifrtGT Execute real-time greater-than

Syntax: frtGt(rtarg1,rtarg2,rtarg3)
codeint rtarg1; /* first real-time
variable for comparison */
codeint rtarg2; /* second real-time
variable for comparison */
codeint rtarg3; /* real-time variable to
be set as 0 or not */

Description: Execute succeeding statements. If rtarg1 > rtarg2,
then execute the code until an endif(rtarg3) or
an elsenz(rtarg3) is encountered. A matching
endif(rtarg3) is required. An optional
elsenz(rtarg3) may be used.

Arguments: rtarg1, rtarg2, and rtarg3 are real- time
variables.

Examples: ifrtGT(v1,v2,v3);
pulse(pw,v2);
delay(d3);
elsenz(v3);
pulse(2.0*pw,v2);
delay(d3/2.0);
endif(v3);

ifrtLE Execute real-time less-than-or-equal

Syntax: ifrtLE(rtarg1,rtarg2,rtarg3);
codeint rtarg1; /* first real-time
variable for comparison */
codeint rtarg2; /* second real-time
variable for comparison */
codeint rtarg3; /* real-time variable to
be set as 0 or not */

Description: Execute succeeding statements. If rtarg1 ¡
rtarg2, then execute the code until an
endif(rtarg3) or an elsenz(rtarg3) is

ifzero Execute real- time equal- zero
Related: elsenz Execute real- time else statement

Related: elsenz Execute real- time else statement
endif Execute real- time endif statement
ifrtEQ Execute real- time equal
ifrtGE Execute real- time

greater- than- or- equal
ifrtLE Execute real- time less- than- or- equal
ifrtLT Execute real- time less- than
iftrtNEQ Execute real- time not- equal
ifzero Execute real- time equal- zero

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 265

encountered. A matching endif(rtarg3) is required.
An optional elsenz(rtarg3) may be used.

Arguments: rtarg1, rtarg2, and rtarg3 are real- time
variables.

Examples: ifrtLE(v1,v2,v3);
pulse(pw,v2);
delay(d3);

elsenz(v3);
pulse(2.0*pw,v2);
delay(d3/2.0);

endif(v3);

ifrtLT Execute real-time less-than

Syntax: ifrtLT(rtarg1,rtarg2,rtarg3);
codeint rtarg1; /* first real-time
variable for comparison */
codeint rtarg2; /* second real-time
variable for comparison */
codeint rtarg3; /* real-time variable to
be set as 0 or not */

Description: Execute succeeding statements. If rtarg1 < rtarg2,
then execute the code until an endif(rtarg3) or
an elsenz(rtarg3) is encountered. A matching
endif(rtarg3) is required. An optional
elsenz(rtarg3) may be used.

Arguments: rtarg1, rtarg2, and rtarg3 are real- time variables.
Examples: ifrtLT(v1,v2,v3);

pulse(pw,v2);
delay(d3);

elsenz(v3);
pulse(2.0*pw,v2);
delay(d3/2.0);

endif(v3);

Related: elsenz Execute real- time else statement
endif Execute real- time endif statement
ifrtEQ Execute real- time equal
ifrtGE Execute real- time

greater- than- or- equal
ifrtGT Execute real- time greater- than
ifrtLT Execute real- time less- than
iftrtNEQ Execute real- time not- equal
ifzero Execute real- time equal- zero

266 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

ifrtEQ Execute real-time equal

Syntax: ifrtEQ(rtarg1,rtarg2,rtarg3);
codeint rtarg1; /* first real-time
variable for comparison */
codeint rtarg2; /* second real-time
variable for comparison */
codeint rtarg3; /* real-time variable to
be set as 0 or not */

Description: Execute succeeding statements. If rtarg1 rtarg2,
then execute the code until an endif(rtarg3) or
an elsenz(rtarg3) is encountered. A matching
endif(rtarg3) is required. An optional
elsenz(rtarg3) may be used.

Arguments: rtarg1, rtarg2, and rtarg3 are real- time
variables.

Examples: ifrtEQ(v1,v2,v3);
pulse(pw,v2);
delay(d3);

elsenz(v3);
pulse(2.0*pw,v2);
delay(d3/2.0);

endif(v3);

Related: elsenz Execute real- time else statement
endif Execute real- time endif statement
ifrtEQ Execute real- time equal
ifrtGE Execute real- time greater- than- or- equal
ifrtGT Execute real- time greater- than
ifrtLE Execute real- time less- than- or- equal
iftrtNEQ Execute real- time not- equal
ifzero Execute real- time equal- zero

Related: elsenz Execute real- time else statement
endif Execute real- time endif statement
ifrtGE Execute real- time

greater- than- or- equal
ifrtGT Execute real- time greater- than
ifrtLE Execute real- time less- than- or- equal
ifrtLT Execute real- time less- than
iftrtNEQ Execute real- time not- equal
ifzero Execute real- time equal- zero

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 267

ifrtNEQ Execute real-time not-equal

Syntax: ifrtNEQ(rtarg1,rtarg2,rtarg3);
codeint rtarg1; /* first real-time
variable for comparison */
codeint rtarg2; /* second real-time
variable for comparison */
codeint rtarg3; /* real-time variable to
be set as 0 or not */

Description: Execute succeeding statements. If rtarg1 = rtarg2,
then execute the code until an endif(rtarg3) or
an elsenz(rtarg3) is encountered. A matching
endif(rtarg3) is required. An optional
elsenz(rtarg3) may be used.

Arguments: rtarg1, rtarg2, and rtarg3 are real- time
variables.

Examples: ifrtEQ(v1,v2,v3);
pulse(pw,v2);
delay(d3);

elsenz(v3);
pulse(2.0*pw,v2);
delay(d3/2.0);

endif(v3);

ifzero Execute real-time equal-zero

Syntax: fzero(vi)
codeint vi; /* real-time variable to
test as 0 or not */

Description: Execute succeeding statements if vi is zero. If vi is
non- zero and an elsenz statement exits before the
next endif statement, execution moves to the
elsenz statement. Conditional execution ends when
the endif statement is reached. It is not necessary
for any statements to appear between the ifzero
and the elsenz or between the elsenz and the
endif statements.

Arguments: vi is a real- time variable (v1 to v42, oph, etc) that
is tested for a zero or non- zero value.

Related: elsenz Execute real- time else statement
endif Execute real- time endif statement
ifrtEQ Execute real- time equal
ifrtGE Execute real- time greater- than- or- equal
ifrtGT Execute real- time greater- than
ifrtLE Execute real- time less- than- or- equal
ifrtLT Execute real- time less- than
ifzero Execute real- time equal- zero

268 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Examples: mod2(ct,v1); /* v1=010101... */
ifzero(v1); /* test if v1 is zero */
pulse(pw,v2); /* execute if v1 is zero */
delay(d3); /* execute if v1 is zero */
elsenz(v1); /* test if v1 is non-zero
*/
pulse(2.0*pw,v2); /* execute if v1 is non-zero
*/
delay(d3/2.0); /* execute if v1 is non-zero
*/
endif(v1); /* end conditional
execution */

incr Increment real-time integer value

Syntax: incr(vi)
codeint vi; /* real-time variable to be
incremented */

Description: Increment the integer value of vi by 1.

Arguments: vi is the integer to be incremented, It must be a
real- time variable (v1 to v42, oph, etc).

Examples: ncr(v4);

Related: elsenz Execute real- time else statement
endif Execute real- time endif statement
ifrtEQ Execute real- time equal
ifrtGE Execute real- time

greater- than- or- equal
ifrtGT Execute real- time greater- than
ifrtLE Execute real- time less- than- or- equal
ifrtLT Execute real- time less- than
iftrtNEQ Execute real- time not- equal

Related: add Add real- time integer values
assign Assign real- time integer value using

real- time integer
dbl Double real- time integer value
decr Decrement real- time integer value
divn Divide real- time integer values
hlv Assign half the value of real- time

integer
initval Assign real- time integer value using

numeric value
mod2 Assign real- time integer value modulo

2
mod4 Assign real- time integer value modulo

4
modn Assign real- time integer value modulo

n

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 269

init_rfpattern Create pattern file for shaped pulse

Syntax: init_rfpattern(pattern,rfpat_struct,nsteps)
char *pattern; /* name of .RF
text file */
RFpattern *rfpat_struct; /* pointer to
struct RFpattern */
int nsteps; /* number of steps
in pattern */
typedef struct _RFpattern {
double phase; /* phase of pattern
step */
double amp; /* amplitude of pattern
step */
double time; /* relative time of
pattern step */
double gate; /* gate 1.0 for on and
0.0 for off */
} RFpattern

Description: Create and define a .RF pattern in shapelib for
shaped pulses with the root name pattern based
on information in the RFpattern structure
rfpat_structure. The pulse sequence should
contain code to populate the structure with nsteps
entries of phase, amp, time, and gate.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

rfpat_struct is the a structure with values to
create the pattern.

nsteps is the number of steps in the pattern.
Examples: #include "standard.h"

pulsesequence()
{
int nsteps;
RFpattern pulse1[512], pulse2[512];
Gpattern gshape[512];
...
nsteps = 0;
for (j=0; j<256; j++) {
pulse1[j].phase = (double)j*0.5;
pulse1[j].amp = (double)j*2;
pulse1[j].time = 1.0;
nsteps = nsteps +1;
}
init_rfpattern(p1pat,pulse1,nsteps);
nsteps = 512;
for (j=0; j<nsteps; j++) {
gshape[j].amp = 32767.0*sin((double)j/50.0);
gshape[j].time = 1.0;

mult Multiply real- time integer values
sub Subtract real- time integer values

270 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

}
init_gradpattern("gpat",gshape,nsteps);
...
shaped_pulse(p1pat,p1,v1,rof1,rof1);
...
shapedgradient("gpat",.01, 16000.0, 'z', 1,
WAIT);
...
}

init_decpattern Create pattern file for waveform decoupling

Syntax: init_decpattern
(pattern,decpat_struct,nsteps)
char *pattern; /* name of .DEC
text file */
DECpattern *rfpat_struct; /* pointer to
struct DECpattern */
int nsteps; /* number of steps
in pattern */
typedef struct _DECpattern {
double phase; /* phase of pattern step */
double amp; /* amplitude of pattern step */
double duration: /* tip-angle duration */
double gate: /* gate 1.0 for on and
0.0 for off*/
} DECpattern

Description: Create and define a .DEC pattern in shapelib for
programmable waveform decoupling with the root
name pattern based on information in the
DECpattern structure decpat_structure. The pulse
sequence should contain code to populate the
structure with nsteps entries of phase, amp,
duration, and gate.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

decpat_struct is a structure with values to create
the pattern.

nsteps is the number of steps in the pattern.

Related: init_decpattern Create pattern file for
waveform decoupling

init_gradpattern Create pattern file for
gradient shape

Related: init_gradpattern Create pattern file for
gradient shape

init_rfpattern Create pattern file for
shaped pulse

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 271

init_gradpattern Create pattern file for gradient shape

Syntax: init_gradpattern(pattern_name,gradpat_struct,nsteps)

char *pattern; /* name of .GID pattern file */
Gpattern *gradpat_struct; /* pointer to
struct Gpattern */
int nsteps; /* number of steps in pattern */
typedef struct _Gpattern {
double amp; /* amplitude of pattern step */
double time; /* pattern step length in sec */
} Gpattern

Description: Create and define a .GRD pattern in shapelib for a
gradient shape with the root name pattern based
on information in the Gpattern structure
gradpat_structure. The pulse sequence should
contain code to populate the structure with nsteps
entries of amp and time within a pulse sequence.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .GRD extension to store
the gradient shape..

gradpat_struct is a structure with values to create
the pattern.

nsteps is the number of steps in the pattern.

initval Assign real-time variable using a numeric value

Syntax: initval(number,vi)
double number; /* numeric value used
for initialization */
codeint vi; /* real-time variable
to be initialized */

Description: Initialize a real- time variable using a numeric value.
The numeric input number is rounded to an integer
and assigned to the value of vi. initval is executed
once and only once at the start of a non- arrayed
1D experiment or at the start of each increment in
an n- dimensional or an arrayed experiment, not at
the start of each transient.

number is the real number, used to assign the value
of the real- time variable.

vi is the real- time variable (v1 to v42, etc) to be
initialized

Examples: (1) initval(nt,v8);
(2) ifzero(ct);
assign(v8,v7);

Related: init_decpattern Create pattern file for
waveform decoupling

init_rfpattern Create pattern file for
shaped pulse

272 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

elsenz(ct);
decr(v7);
endif(ct);

Related: add Add real- time integer values
assign Assign real- time integer value using

real- time integer
dbl Double real- time integer value
decr Decrement real- time integer value
divn Divide real- time integer values
hlv Assign half the value of real- time

integer
incr Increment real- time integer value
mod2 Assign real- time integer value modulo 2
mod4 Assign real- time integer value modulo 4
modn Assign real- time integer value modulo n
mult Multiply real- time integer values
sub Subtract real- time integer values

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 273

K

kzendloop End real-time loop with fixed duration

Syntax: void kzendloop(index)

codeint index /* real-time variable index */

Description: End a loop that was started by a kzloop statement.

Arguments: index is a real- time variable used as an index to
keep track of the number of times through the loop.
It must be the same variable used in kzloop and
its value should not be altered by any real- time
math statements.

Examples: kzendloop(v10);

kzloop Start real-time loop with fixed duration

Syntax: int kzloop(time, vcount, index)

double time /*
duration of the loop, seconds */

codeint vcount /* number of times to
loop */

codeint index /*
real-time index to steps of loop */

int return /* number of times to loop */

Description: Start a loop to execute statements in real- time with
a fixed number of repetitions. The kzendloop
statement ends the loop begun by kzloop. This
statement should be used to replace loop in parallel
sections of a pulse sequence, created by
parallelstart-parallelend. Unlike loop the
total duration of kzloop is known at run time.

kzendloop End real-time loop with fixed duration
kzloop Start real-time loop with fixed duration

Related: endloop End real- time loop
kzloop Start real- time loop with fixed

duration
loop Start real- time loop
parallelend End parallel section of pulse

sequence
parallelstart Start parallel section of pulse

sequence
rlendloop End real- time loop with fixed

count
rlloop Start real- time loop with fixed

count

274 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Arguments: time is a duration that contains the loop. The
number of times through the loop is set to complete
the loop within the duration time. A delay is added
after the loop, if necessary, to complete the
duration time.

vcount is a real- time variable containing the
number of times through the loop. It is calculated
and initialized based on the duration time. The
value of vcount should not be changed by any
real- time math statements.

index is a real- time variable used as an index to
keep track of the number of times through the
loop. It must be the same variable as that used in
kzendloop and its value should not be altered by
any real- time math statements.

Examples:

In this example, the loop count is calculated as
trunc(14.0/3.0) = 4 repetitions of 3 seconds. The
remaining duration, 14.0 – 4*3.0 = 2.0 seconds will
be added as a delay after the repetitions.

kzloop(14.0,v2,v11);

 delay(3.0);

kzendloop(v11);

Related: endloop End real- time loop
kzendloop End real- time loop with fixed

duration
loop Start real- time loop
parallelend End parallel section of pulse

sequence
parallelsta
rt

Start parallel section of pulse
sequence

rlendloop End real- time loop with fixed
count

rlloop Start real- time loop with fixed
count

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 275

L

lk_hold Set lock correction circuitry to hold correction

Syntax: lk_hold()

Description: Make the lock correction circuitry hold the
correction to the z0 constant, thereby ignoring any
influence on the lock signal such as a gradient or
pulses at 2H frequency. The correction remains in
effect until the statement lk_sample is called or
until the end of an experiment. If an acquisition is
aborted, the lock correction circuitry will be reset
to sample the lock signal.

lk_sample Set lock correction circuitry to sample lock signal

Syntax: lk_sample()

Description: Make the lock correction circuitry continuously
sample the lock signal and correct z0 with the time
constant as set by the parameter lockacqtc. The
correction remains in effect until the statement
lk_hold is called.

loadtable Assign table elements from table text file

Syntax: loadtable(file)
char *file; /* name of table file */

Description: Load table elements from a text table file in
tablib. loadtable can be called multiple times
within a pulse sequence but the same table name
may not be used more than once within all the table
files accessed by the sequence.

lk_hold Set lock correction circuitry to hold correction
lk_sample Set lock correction circuitry to sample lock signal
loadtable Assign table elements from table text file
loop Start real-time loop
loop_check Check number of FIDs for compressed acquisition

Related: lk_sample Set lock correction circuitry to hold
correction

Related: lk_hold Set lock correction circuitry to hold
correction

276 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

file is the name of a table file in a user's private
tablib or in the system tablib.

Examples: loadtable("tabletest");

loop Start real-time loop

Syntax: loop(count,index)
codeint count /* number of times to loop */
codeint index /* real-time index to steps of
loop */

Description: Start a loop to execute statements in real- time
within one scan of a pulse sequence. The loop ends
with the endloop statement.

Arguments: count is a real- time variable used to specify the
number of times through the loop. count can be any
positive number, including zero.

Arguments: index is a real- time variable used as an index to
keep track of the number of times through the loop.
It must be the same variable as that used in
endloop and its value should not be altered by any
statements within the loop.

Examples: initval(5.0,v1); /* set first loop count */
loop(v1,v10);
dbl(ct,v2); /* set second loop count */
loop(v2,v9);
rgpulse(p1,v1,0.0,0.0);
endloop(v9);
delay(d2);
endloop(v10);

loop_check Check number of FIDs for compressed acquisition

Syntax: loop_check()

Description: Check that the number of FIDs in a compressed
acquisition nf is consistent with the number of
slices ns, number of echoes ne, number of phase
encoding steps in the various dimensions (nv,
nv2, nv3), and seqcon.

Related: getelem Assign real- time integer using table
element

setreceiver Set quadrature receiver phase cycle
from table

settable Assign integer array to table

Related: endhardloop End hardware loop
loop Start real- time loop
starthardloop Start hardware loop

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 277

Related: msloop Start switchable multislice loop
endloop End real- time loop
endmsloop End switchable multislice loop
endpeloop End switchable phase- encode loop
loop Start real- time loop
peloop Start switchable phase- encode loop

278 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

M

magradient Set three-axis gradient at the magic angle

Syntax: magradient(gradlvl)
double gradlvl; /* magic-angle gradient
amplitude, Gauss/cm */

Description: Apply static gradients simultaneously to the x, y,
and z axes at the magic angle, 54.7o to B0.
Information from a gradient table is used to convert
Gauss/cm into DAC settings for the three axes. The
gradients remain set until they are turned off. To
turn off the gradients, add another magradient
statement with gradlvl set to 0.0 or insert the
statement zero_all_gradients.

Use magradient(gradlvl); delay(width);
magradient(0.0) to apply a magic- angle gradient
pulse with duration width. Use the magradient
construction rather than magradpulse if additional
statements are required before the end of the
gradient pulse.

Arguments: gradlvl is the gradient amplitude at the magic
angle, in Gauss/cm.

Examples: magradient(3.0);
pulse(pw,oph);
delay(0.001 - pw);
magradient(0.0);

magradient Set three-axis gradient at magic angle
magradpulse Perform three-axis gradient pulse at magic angle
mashapedgradient Perform three-axis gradient shape at magic angle
mashapedgradpulse Perform three-axis shaped gradient pulse at magic

angle
mod2 Assign real-time integer value modulo 2
mod4 Assign real-time integer value modulo 4
modn Assign real-time integer value modulo n
msloop Start switchable multislice loop
mult Multiply real-time integer values

Related: magradpulse Perform three- axis gradient
pulse at magic angle

mashapedgradient Perform three- axis shaped
gradient at magic angle

mashapedgradpulse Perform three- axis shaped
gradient pulse at magic
angle

zero_all_gradients Zero gradient DAC level for
all axes

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 279

magradpulse Perform three-axis gradient pulse at magic angle

Syntax: magradpulse(gradlvl,width)
double gradlvl; /* magic-angle gradient
amplitude, Gauss/cm */
double width; /* duration of the gradient
pulse, seconds */

Description: Apply a static gradient pulse simultaneously to the
x, y, and z axes at the magic angle, 54.7o to B0.
Information from the gradient table is used to
convert Gauss/cm into DAC settings for the three
axes. The gradient DACS are set to 0.0 at the
completion of the pulse.

Arguments: gradlvl is the gradient- pulse amplitude at the
magic angle, in Gauss/cm.

width is the duration of the gradient pulse, in
seconds.

Examples: magradpulse(3.0,0.001);

mashapedgradient Perform three-axis gradient shape at magic angle

Syntax: mashapedgradient(pattern,gradlvl,width,loops,wait)
char *pattern; /* names of a .GRD file */
double gradlvl; /* magic angle gradient
amplitude, Gauss/cm */
double width; /* duration of gradient shape,
seconds */
int loops; /* not implemented */
int wait; /* WAIT or NOWAIT */

Description: Apply a static, gradient shape with duration width
simultaneously to the x, y, and z axes at the magic
angle, 54.7° to B0. Information from the gradient
table is used to convert Gauss/cm into DAC settings
for the three axes. When mashapedgradient
completes, the gradients remain set at their last
value until they are turned off. To turn off the
gradients, add the statement magradient with
gradlvl set to 0.0 or insert the statement
zero_all_gradients.

Related: magradient Set three- axis gradient at
magic angle

mashapedgradient Perform three- axis shaped
gradient at magic angle

mashapedgradpulse Perform three- axis shaped
gradient pulse at magic
angle

zero_all_gradients Zero gradient DAC level for
all axes

280 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Use mashapedgradient with the NOWAIT option
rather than mashapedgradpulse if additional
statements are required before the end of the
gradient pulse.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .GRD extension to store
the gradient shape.

width is the duration of the gradient shape, in
seconds.

loops is not implemented. The shape is executed
once. Set 0 for clarity.

wait is a keyword with values of WAIT or NOWAIT,
which determines the delay until the execution of
next statement. If the value is WAIT, the delay is
width seconds. If the value is NOWAIT, the delay is
0.0 seconds.

Examples: mashapedgradient("ramp_hold",3.0,trise,0,NOWAIT);
pulse(pw,oph);
delay(0.001-pw-2*trise);
mashapedgradient("ramp_down",3.0,trise,0,NOW
AIT);

mashapedgradpulse Perform three-axis shaped gradient pulse at magic angle

Syntax: mashapedgradpulse(pattern,gradlvl,width)
char *pattern; /* name of a .GRD file */
double gradlvl; /* gradient amplitude,
Gauss/cm */
double width; /* duration of gradient
pulse, seconds */
int loops; /* number of waveform loops */
int wait; /* WAIT or NOWAIT */

Description: Apply a static, shaped gradient pulse with duration
width simultaneously to the x, y, and z axes at the
magic angle, 54.7° to B0. Information from the
gradient table is used to convert Gauss/cm into
DAC settings for the three axes. The gradient DACS
are set to 0.0 at the completion of the pulse.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .GRD extension to store
the gradient shape.

Related: magradient Set three- axis gradient at
magic angle

magradpulse Perform three- axis gradient
pulse at magic angle

mashapedgradpulse Perform three- axis shaped
gradient pulse at magic
angle

zero_all_gradients Zero gradient DAC level for
all axes

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 281

gradlvl is the gradient- pulse amplitude at the
magic angle, in Gauss/cm.

width is the duration of the gradient pulse, in
seconds.

Examples: mashapedgradpulse("hsine",3.0, 0.001);

mod2 Assign real-time integer value modulo 2

Syntax: mod2(vi,vj)
codeint vi; /* real-time variable for input */
codeint vj; /* real-time variable for output
*/

Description: Set the value of vj equal to the integer value of vi
modulo 2 (the remainder after the value of vi is
divided by 2).

Arguments: vi contains the input value and vj contains the
result of the value of vi modulo 2. Both arguments
must be real- time variables (v1 to v42, etc).

Examples: mod2(v3,v5);

Related: magradient Set three- axis gradient at
magic angle

magradpulse Perform three- axis gradient
pulse at magic angle

mashapedgradient Perform three- axis shaped
gradient at magic angle

zero_all_gradients Zero gradient DAC level for
all axes

Related: add Add real- time integer values
assign Assign real- time integer value using

real- time integer
dbl Double real- time integer value
decr Decrement real- time integer value
divn Divide real- time integer values
hlv Assign half the value of real- time

integer
incr Increment real- time integer value
initval Assign real- time integer value using

numeric value
mod4 Assign real- time integer value modulo 4
modn Assign real- time integer value modulo n
mult Multiply real- time integer values
sub Subtract real- time integer values

282 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

mod4 Assign real-time integer value modulo 4

Syntax: mod4(vi,vj)
codeint vi; /* real-time variable for
input */
codeint vj; /* real-time variable for
output */

Description: Set the value of vj equal to the integer value of vi
modulo 4 (the remainder after the value of vi is
divided by 4)..

Arguments: vi contains the input value and vj contains the
result of the value of vi modulo 4. Both arguments
must be real- time variables (v1 to v42, etc).

Examples: mod4(v3,v5);

modn Assign real-time integer value modulo n

Syntax: modn(vi,vj,vk)
codeint vi; /* real-time variable for input */
codeint vj; /* real-time variable for
modulo number */
codeint vk; /* real-time variable for output
*/

Description: Set the value of vk equal to the integer value of vi
modulo the value of vj (the remainder after the
value of vi is divided by the value of vj).

Arguments: vi contains the input value, vj contains the modulo
value n, and vk contains the result of the value of
vi modulo n. All arguments must be real- time
variables (v1 to v42, etc).

Examples: modn(v3,v5,v4);

Related: add Add real- time integer values
assign Assign real- time integer value using

real- time integer
dbl Double real- time integer value
decr Decrement real- time integer value
divn Divide real- time integer values
hlv Assign half the value of real- time

integer
incr Increment real- time integer value
initval Assign real- time integer value using

numeric value
mod2 Assign real- time integer value modulo

2
modn Assign real- time integer value modulo

n
mult Multiply real- time integer values
sub Subtract real- time integer values

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 283

msloop Start switchable multislice loop

Syntax: msloop(state,max_count,apv1,apv2)
char state; /* compressed or standard
*/
double max_count; /* numeric value to
initialize apv1 */
codeint apv1; /* real-time variable
with maximum count */
codeint apv2; /* real-time counter */

Description: Execute a sequence- switchable loop that can use
real- time variables in what is known as a
compressed loop or can use the standard arrayed
features of PSG. In imaging sequences, msloop uses
the second character of the seqcon string parameter
(seqcon[1]) for the state argument. msloop is used
in conjunction with endmsloop.

Arguments: state is either 'c' to designate the compressed
mode, or 's' to designate the standard arrayed
mode.

max_count initializes apv1. If state is 'c', this value
should equal the number of slices. If state is 's',
this value should be 1.0.

apv1 is a real- time variable that holds the
maximum count.

apv2 is a real- time variable that holds the current
counter value. If state is 'c', apv2 counts from 0 to
max_count-1. If state is 's', apv2 is set to zero.

Examples: msloop(seqcon[1],ns,v11,v12);
...
poffset_list(pss,gss,ns,v12);
...

Related: add Add real- time integer values
assign Assign real- time integer value using

real- time integer
dbl Double real- time integer value
decr Decrement real- time integer value
divn Divide real- time integer values
hlv Assign half the value of real- time

integer
incr Increment real- time integer value
initval Assign real- time integer value using

numeric value
mod2 Assign real- time integer value modulo

2
mod4 Assign real- time integer value modulo

4
mult Multiply real- time integer values
sub Subtract real- time integer values

284 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

acquire(np,1.0/sw);
...
endmsloop(seqcon[1],v12);

mult Multiply real-time integer values

Syntax: mult(vi,vj,vk)
codeint vi; /* real-time variable for first
factor */
codeint vj; /* real-time variable for second
factor */
codeint vk; /* real-time variable for
product */

Description: Set the value of vk equal to the product of the
integer values of vi and vj.

Arguments: vi contains an integer factor, vj contains second
integer factor, and vk contains the product. All
arguments are real- time variables (v1 to v42, etc).

Examples: mult(v3,v5,v4);

Related: endloop End real- time loop
endmsloop End switchable multislice loop
endpeloop End switchable phase- encode loop
loop Start real- time loop
loopcheck Check number of FIDS for

compressed acquisition
peloop Start switchable phase- encode loop

Related: add Add real- time integer values
assign Assign real- time integer value using

real- time integer
dbl Double real- time integer value
decr Decrement real- time integer value
divn Divide real- time integer values
hlv Assign half the value of real- time

integer
incr Increment real- time integer value
initval Assign real- time integer value using

numeric value
mod2 Assign real- time integer value modulo 2
mod4 Assign real- time integer value modulo 4
modn Assign real- time integer value modulo n
sub Subtract real- time integer values

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 285

O

obl_gradient Set three-axis oblique gradient

Syntax: obl_gradient(gradlvl1,gradlvl2,gradlvl3)
double gradlvl1,gradlvl2,gradlvl3; /* static
gradient amplitudes,
/* Gauss/cm */

Description: Apply a static, oblique gradient using the angles
psi, theta, and psi, obtained from the parameters
of those names.

Arguments: gradlvl1, gradlvl2, gradlvl3 are the three
amplitudes of the static gradient, in Gauss/cm,
along the three logical axes, read, phase, and slice,
respectively.

Examples: obl_gradient(0.0,0.0,gss);
obl_gradient(gro,0.0,0.0);

obl_gradient Set three-axis oblique gradient
obl_shapedgradient Perform three-axis oblique gradient shape, single pattern
obl_shaped3gradient Perform three-axis oblique gradient shape, three patterns
obsblank Blank amplifier of observe channel
obsoffset Set frequency offset of observe channnel
obspower Set power level of observe channel
obsprgoff End waveform decoupling on observe channel
obsprgon Start waveform decoupling on observe channel
obspulse Perform pulse with assigned values on observe channel
obspwrf Set fine power level of observe channel
obsstepsize Set small-angle phase stepsize for observe channel
obsunblank Unblank amplifier of observe channel
offset Change frequency offset of any channel
offsetglist Create offset array from position and gradient amplitude

arrays
offsetlist Create offset array from position and gradient amplitude

Related: mashapedgradient Perform three- axis
shaped gradient at magic
angle

obl_shapedgradient Perform three- axis
oblique shaped gradient,
one pattern

obl_shaped3gradient Perform three- axis
oblique shaped gradient,
three patterns

rot_angle Set user- defined oblique
gradient- coordinate
rotation axes

pe3_shaped3gradient Perform oblique shaped
gradient, three patterns,
phase encode three axes

286 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

obl_shapedgradient Perform three-axis oblique gradient shape, single pattern

Syntax: obl_shapedgradient(pattern,width,gradlvl1,gradlvl2,g
radlvl3)
char *pattern; /* name of .GRD file */
double width; /* duration of gradient
pulse, seconds */
double gradlvl1,gradlvl2,gradlvl3;
/* static gradient amplitudes, Gauss/cm */
int wait; /* WAIT or NOWAIT */

Description: Apply a static, oblique, gradient shape with a single
pattern for all three axes, using the angles psi,
theta, and psi, obtained from the parameters of
those names, in either WAIT or NOWAIT mode.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .GRD extension to store
the gradient shape.

width is the duration of the shaped gradient, in
seconds.

gradlvl1, gradlvl2, gradlvl3 are the three
components of the static portion of the gradient, in
Gauss/cm, along the three logical axes, read, phase,
and slice, respectively.

wait is a keyword with values of WAIT or NOWAIT,
that determines the delay until the execution of
next statement. If the value is WAIT, the delay is
width seconds. If the value is NOWAIT, the delay is
0.0 seconds.

Examples: obl_shapedgradient("ramp_hold",trise,gro,0.0,0.0,N
OWAIT);

Related: mashapedgradient Perform three- axis shaped
gradient at magic angle

obl_gradient Perform three- axis oblique
gradient

obl_shaped3gradient Perform three- axis oblique
shaped gradient, three
patterns

rot_angle Set user- defined oblique
gradient- coordinate
rotation axes

pe3_shaped3gradient Perform oblique shaped
gradient, three patterns,
phase encode three axes

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 287

obl_shaped3gradient Perform three-axis oblique gradient shape, three patterns

Syntax: obl_shaped3gradient(pat1,pat2,pat3,width,gradlvl1,gr
adlvl2,gradlvl3,wait)
char *pat1,*pat2,*pat3; /* names of .GRD
files */
double width; /* duration of
gradient pulse, seconds */
double gradlvl1,gradlvl2,gradlvl3;
/* static gradient amplitudes, Gauss/cm */
int wait; /* WAIT or NOWAIT */

Description: Apply a static, oblique, gradient shape with a
separate pattern for each axis , using the angles
psi, theta, and psi, obtained from the parameters
of those names, in either WAIT or NOWAIT mode.

Arguments: pat1,pat2,pat3 are the root names of text files in
the shapelib directory with a .GRD extension to
store the gradient shapes.

width is the duration of the shaped gradient, in
seconds.

gradlvl1, gradlvl2, gradlvl3 are the three
components of the static portion of the gradient, in
Gauss/cm, along the three logical axes, read, phase,
and slice, respectively.

wait is a keyword with values of WAIT or NOWAIT,
that determines the delay until the execution of
next statement. If the value is WAIT, the delay is
width seconds. If the value is NOWAIT, the delay is
0.0 seconds.

Examples: obl_shaped3gradient("ramp_hold","","",trise,gro,0.
0,0.0,NOWAIT);

obsblank Blank amplifier of observe channel

Syntax: obsblank()

Description: Disable the amplifier for the observe channel if the
amplifier is in pulse mode. obsblank has no effect
if the amplifier is in continuous mode. The observe

Related: mashapedgradient Perform three- axis shaped
gradient at magic angle

obl_gradient Perform three- axis oblique
gradient

obl_shapedgradient Perform three- axis oblique
shaped gradient, one
pattern

rot_angle Set user- defined oblique
gradient- coordinate
rotation axes

pe3_shaped3gradient Perform oblique shaped
gradient, three patterns,
phase encode three axes

288 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

channel is in pulse mode by default because it is
always associated with a receiver.

obsblank must be used before acquisition and it is
often used between pulses and decoupling periods
to suppress amplifier noise.

To place the observe channel in continuous mode,
create the parameter ampmode and set the
appropriate character to 'c'. For continuous mode,
obsblank has no effect and the statement is not
needed. Placing an observe channel in continuous
mode will usually lower the signal- to- noise of the
acquisition.

obsoffset Set frequency offset of observe channel

Syntax: obsoffset(frequency)
double frequency; /* frequency offset, Hz */

Description: Set the frequency offset of the observe channel. The
offset of the observe channel is initialized to tof
before the first obsoffset statement is applied. You
must explicitly use obsoffset(tof) to return the
offset to tof.

The obsoffset statement sets the VNMRS
synthesizer frequency that simultaneously
determines the base frequency of pulses and the
center frequency of the receiver. You should use
caution in resetting the frequency offset. Incorrect
use of obsoffset can influence the phase coherence
of the receiver and pulses scan- to- scan.

The obsoffset statement inserts a 50 ns delay into
the pulse sequence. The VNMRS synthesizer can
take several microseconds to set. It may be
necessary to compensate for these delays in the
pulse sequence.

Arguments: frequency is the desired frequency offset, in Hz.
Examples: obsoffset(newoffset);

obsoffset(dof4);

Related: dec2blank Blank amplifier of second decoupler
dec3blank Blank amplifier of third decoupler
dec4blank Blank amplifier of fourth decoupler
obsblank Blank amplifier of observe channel
obsunblank Unblank amplifier of observe

channel

Related: dec2offset Set frequency offset of second
decoupler

dec3offset Set frequency offset of third
decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 289

obspower Set power level of observe channel

Syntax: obspower(power)
double power; /* power-level value, dB */

Description: Set the power level of the observe channel using the
coarse attenuator. The power level of the observe
channel is initialized to tpwr before the first
obspower statement is applied. You must explicitly
use obspower(tpwr) to return the power level to
tpwr. obspower is functionally the same as
rlpower(value,DODEV).

The obspower statement inserts a delay of 50 ns
into the pulse sequence and you should allow 3 µs
for the power to reach the new level during the next
delay. The coarse attenuator can introduce a
transient when it changes and it is a good practice
to execute obspower only when the transmitter is
blanked and gated off.

Arguments: power sets the coarse attenuator in 0.5 dB steps
from a maximum power of 63 to a minimum of –37
if the 100 db attenuator is present. The stepsize is
truncated to 1.0 dB and the minimum is –16 dB if
the 79 dB attenuator is present. Consult the
configuration file to determine the available
attenuator.

obsprgoff End waveform decoupling on observe channel

Syntax: obsprgoff()

Description: Terminates programmable waveform decoupling on
the observe channel, gates the observe channel off,
and blanks the associated amplifier if it is in pulse
mode.

dec4offset Set frequency offset of fourth
decoupler

offset Set frequency offset of any
channel

Related: dec2power Set power level of second decoupler
dec3power Set power level of third decoupler
dec4power Set power level of fourth decoupler
rlpower Set the power level of any channel

Related: decprgoff End waveform decoupling on
first decoupler

dec2prgoff End waveform decoupling on
second decoupler

290 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

obsprgon Start waveform decoupling on observe channel

Syntax: obsprgon(pattern,90_pulselength,tipangle_resoln)
char *pattern; /* name of .DEC file */
double 90_pulselength; /* 90-degree pulse
length in sec */
double tipangle_resoln; /* tip-angle
resolution */
return int ticks /* 12.5 ns ticks,
one cycle */

Description: Execute programmable decoupling on the observe
channel under waveform control, unblank the
associated amplifier, and gate the observe channel
on for patterns without an explicit gate column.
obsprgon returns an integer with the number of
12.5- ns ticks in one cycle of the decoupling pattern.
It is a good practice to unblank the associated
amplifier with obsunblank, at least 2.0 µs before
obsprgon.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90°.
Often 90_pulselength is set equal 1/dmf where dmf
is a step rate.

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

For many patterns, 90_pulselength is the actual
90° pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case, tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,
tipangle_resoln is nominally 90 and elements in

dec3prgoff End waveform decoupling on
third decoupler

dec4prgoff End waveform decoupling on
fourth decoupler

obsblank Blank amplifier of observe
channel

obsprgon Start waveform decoupling on
observe channel

obsprgonOffset Start waveform decoupling on
observe channel with offset

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 291

the pattern have tip- angle durations that are
multiples of 90.

For some patterns, 90_pulselength is the actual
90° pulse length but elements of the pattern have
arbitrary flip angles that are multiples of a
tipangle_resoln, that is less than 90° (c.f. 1.0°).
In this case, tipangle_resoln is the divisor (c.f.
1.0) and for good practice it is also a divisor of 90.0.

Examples: obsprgon("garp1",1/dmf, 1.0);
obsprgon(modtype,pwx90,dres);
ticks = obsprgon("waltz16",1/dmf,90.0);

obsprgonOffset Start waveform decoupling on observe channel with offset

Syntax: obsprgonOffset(pattern,90_pulselength,
tipangle_resoln,offset)
char *pattern; /* name of .DEC file */
double 90_pulselength; /* 90-degree pulse
length in sec */
double tipangle_resoln; /* tip-angle
resolution */
double offset; /* frequency offset, in Hz */
return int ticks /* 12.5 ns ticks, one cycle */

Description: Execute programmable decoupling on the first
decoupler under waveform control with a frequency
offset that is applied automatically. The statement
obsprgonOffset unblanks the associated amplifier
and gates the first decoupler on for patterns
without an explicit gate column. obsprgonOffset
returns an integer with the number of 12.5- ns ticks
in one cycle of the decoupling pattern. It is a good
practice to unblank the associated amplifier with
obsunblank, at least 2.0 µs before obsprgonOffset.

The frequency offset is applied by phase modulation
of the base pattern in the rf controller. The phase
modulation is achieved by expanding the pattern to
include linear phase steps as well as by

Related: decprgon Start waveform decoupling on
first decoupler

dec2prgon Start waveform decoupling on
second decoupler

dec3prgon Start waveform decoupling on
third decoupler

dec4prgon Start waveform decoupling on
fourth decoupler

obsprgoff End waveform decoupling on
observe channel

obsprgonOffset Start waveform decoupling on
observe channel with offset

obsunblank Unblank amplifier of observe
channel

292 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

interpolation in real- time. Use of obsprgonOffset
with a base pattern achieves about a ten- fold
compression of steps relative to an equivalent
pattern supplied in the .DEC file.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .DEC extension to store
the decoupling pattern.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90°.
Often 90_pulselength is set equal 1/dmf where
dmf is a step rate.

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

For many patterns, 90_pulselength is the actual
90° pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case, tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,
tipangle_resoln is nominally 90 and elements in
the pattern have tip- angle durations that are
multiples of 90.

For some patterns, 90_pulselength is the actual
90o pulse length but elements of the pattern have
arbitrary flip angles that are multiples of a
tipangle_resoln, that is less than 90° (c.f. 1.0°).
In this case, tipangle_resoln is the divisor (c.f.
1.0) and for good practice it is also a divisor of 90.0.

offset is a frequency offset relative to the
synthesizer frequency, in Hz.

Examples: obsprgonOffset("garp1",1/dmf, 1.0,1000.0);
obsprgonOffset(modtype,pwx90,dres,1000.0);
ticks =
obsprgonOffset("waltz16",1/dmf,90.0,1000.0);

Related: decprgonOffset Start waveform decoupling on
first decoupler with offset

dec2prgonOffset Start waveform decoupling on
second decoupler with offset

dec3prgonOffset Start waveform decoupling on
third decoupler with offset

dec4prgonOffset Start waveform decoupling on
fourth decoupler with offset

obsprgoff End waveform decoupling on
observe channel

obsprgon Start waveform decoupling on
observe channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 293

obspulse Perform pulse with assigned values on observe channel

Syntax: obspulse()

Description: Set the quadrature phase and gates the observe
channel on and off at the current power level with
amplifier unblanking and blanking, using a predelay
of rof1 and a postdelay of rof2. The pulse width
is automatically set to pw and the phase is
automatically set to oph. The associated amplifier is
unblanked if it is in pulse mode and the phase is
set, both at the beginning of the predelay. The
associated amplifier is blanked at the end of the
postdelay if it is in pulse mode.

obspwrf Set fine power level of observe channel

Syntax: obspwrf(amplitude)
double power; /* fine-power value */

Description: Set the fine- power value of the observe channel
using the linear modulator. The fine power level of
the observe channel is initialized to tpwrf before
the first obspwrf statement is applied. You must
explicitily use obspwrf(tpwrf) to return the power
level to tpwrf. The statement obspwrf is
functionally similar to rlpwrf(amplitude,DODEV).
Fine power units are linear in voltage.

Arguments: amplitude sets the fine power in units of 1.0 from
a maxium of 4095.0 to a minimum of 0.0. If the
12- bit linear modulator is available the stepsize is
1.0. If the 16- bit linear modulator is present
decimal values (3 significant figures) are allowed.
Consult the configuration file to determine the
available modulator. The fine power and coarse
power can be used interchangeably where 6 dB
units of coarse power correspond to a x2 change of
the fine power.

Examples: obspwrf(3500);obspwrf(3500.324);

obsunblank Unblank the amplifier of
observe channel

Related: decpulse Perform pulse with assigned values
on first decoupler

decrgpulse Perform pulse on first decoupler
pulse Perform pulse with assigned values

on observe channel
rgpulse Perform pulse on observe channel

294 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

obsstepsize Set small-angle phase stepsize of observe channel

Syntax: obsstepsize(stepsize)
double stepsize; /* small-angle phase
stepsize */

Description: Set the small- angle phase stepsize of the observe
channel. The xmtrphase statement sets the
small- angle phase as a product of step_size and a
real- time multiplier. obsstepsize is not used, the
default step_size is 90°. The obsstepsize
statement can be used multiple times in a sequence.

The small- angle phase of the DD2 MR system has a
phase resolution of 360.0/65536 (~0.0055°). The
VNMRS has a phase resolution of 360.0/8192
(~0.044°) depending on the available transmitter,
and the small- angle phase is set to the nearest step.
Consult the configuration file to determine which
transmitter is present.

Arguments: stepsize is a value, in degrees, corresponding to
one unit of the real- time phase multiplier.

Examples: obsstepsize(30.0);

obsunblank Unblank amplifier of observe channel

Syntax: obsunblank()

Related: decpwrf Set fine power level of first decoupler
dec2pwrf Set fine power level of second

decoupler
dec3pwrf Set fine power level of third decoupler
dec4pwrf Set fine power level of fourth

decoupler
rlpwrf Set fine power level of any channel

Related: decstepsize Set small- angle phase stepsize of
first decoupler

dec2stepsize Set small- angle phase stepsize of
second decoupler

dec3stepsize Set small- angle phase stepsize of
third decoupler

dec4stepsize Set small- angle phase stepsize of
fourth decoupler

obsstepsize Set small- angle phase stepsize of
observe channel

stepsize Set small- angle phase stepsize of
any channel

xmtrphase Set small- angle phase of observe
channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 295

Description: Enable the amplifier for the observe channel if the
amplifier is in pulsed mode. For pulsed mode,
obsunblank is required at least 2.0 µs before pulses,
spinlocks, and decoupling periods.

The observe channel is in pulsed mode by default
because it is always associated with a receiver.

To place the observe channel in continuous mode ,
create the parameter ampmode and set the
appropriate character to 'c'. For continuous mode,
obsunblank is the default and the statement is not
needed. Placing an observe channel in continuous
mode will usually lower the signal- to- noise of the
acquisition.

offset Change frequency offset of any channel

Arguments: Use obsoffset, decoffset, dec2offset, or dec3offset, as
appropriate.

offsetglist Create offset array from position and gradient-amplitude array

Syntax: offsetlist(posarray, gradarray, resfrq,
offsetarray, ns, state)
double posarray[]; /* input positions, in
cm */
double gradarray; /* input gradient
amplitudes in cm */
double resfrq; /* optional

Related: decunblank Unblank amplifier of first
decoupler

dec2unblank Unblank amplifier of second
decoupler

dec3unblank Unblank amplifier of third
decoupler

dec4unblank Unblank amplifier of fourth
decoupler

obsunblank Unblank amplifier of observe
channel

Related: decoffset Set frequency offset of first
decoupler

dec2offset Set frequency offset of second
decoupler

dec3offset Set frequency offset of third
decoupler

dec4offset Set frequency offset of fourth
decoupler

obsoffset Set frequency offset of observe
channel

296 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

chemical-shift offset, in Hz */
double offsetarray[]; /*returned array of
calculated offsets */
doublem ns; /* number of positions */
char state; /* the mode, crompessed,
strandard or indexed */

Description: Calculate a C double array of rf frequency offsets
offsetarray from a position array posarray and a
gradient- amplitude array gradarray in Gauss/cm.
This array can then be used in the shapelist
command.

Arguments: posarray is an input array containing slice
positions, in cm.

gradarray is an input array containing gradient
amplitudes, in Gauss/cm.

resfrq is an optional chemical- shift frequency
offset, in Hz, to be added to the computed offsets.

offsetarray is returned containing a set of
frequency offsets, in Hz, from the calculation. This
array should be declared as an array of doubles
with a size greater than or equal to the number of
offsets.

ns is the number of positions in the array.

state is either 'c' to designate the compressed
mode, 's' to designate the standard arrayed mode,
or 'i' to designate an integer indexed mode to be
used in a C loop.

offsetlist Create offset array from position and gradient-amplitude

Syntax: offsetlist(posarray, gradlvl, resfrq,
offsetarray, ns, state)
double posarray[]; /* input positions, in
cm */
double gradlvl; /* input gradient
amplitudes in cm */
double resfrq; /* optional

Related: getarray Obtain all values from
arraye parameter

offsetlist Create offset array from
position and gradient
amplitude

poffset Return frequency offset
based on position

poffset_list Create
offset array from
position array

position_offset Return frequency offset
based on position

position_offset_list Create offset array from
position array

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 297

chemical-shift offset, in Hz */
double offsetarray[]; /* returned array of
calculated offsets */
doublem ns; /* number of positions */
char state; /* the mode, crompessed,
strandard or indexed */

Description: Calculate a C double array of rf frequency offsets
offsetarray from a position array posarray and a
gradient- amplitude array gradarray in Gauss/cm.
This array can then be used in the shapelist
command.

Arguments: posarray is an input array containing slice
positions, in cm.

gradlvl is a gradient amplitudes, in Gauss/cm.

resfrq is an optional chemical- shift frequency
offset, in Hz, to be added to the computed offsets.

offsetarray is returned containing a set of
frequency offsets, in Hz, from the calculation. This
array should be declared as an array of doubles
with a size greater than or equal to the number of
offsets.

ns is the number of positions in the array.

state is either 'c' to designate the compressed
mode, 's' to designate the standard arrayed mode,
or 'i' to designate an integer indexed mode to be
used in a C loop.

Related: getarray Obtain all values from
arraye parameter

offsetglist Create offset array from
position and
gradient- amplitude array

poffset Return frequency offset
based on position

poffset_list Create offset array from
position array

position_offset Return frequency offset
based on position

position_offset_list Create offset array from
position array

298 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

P

parallelacquire_obs Acquire data explicitly in parallel section
parallelacquire_rcvr Acquire data explicitly in parallel section
parallelend End parallel section of pulse sequence
parallelstart Start parallel section of pulse sequence
parallelsync Position parallel synchronization delays
pe_gradient Set oblique gradient, phase encode one

axis
pe2_gradient Set oblique gradient, phase encode two

axes
pe3_gradient Set oblique gradient, phase encode three

axes
pe_shapedgradient Perform oblique gradient shape, single

pattern, phase encode one axis
pe_shaped3gradient Perform oblique gradient shape, three

patterns, phase encode one axis
pe2_shapedgradient Perform oblique gradient shape, single

pattern, phase encode two axes
pe2_shaped3gradient Perform oblique gradient shape, three

patterns, phase encode two axes
pe3_shapedgradient Perform oblique gradient shape, single

pattern, phase encode three axes
pe3_shaped3gradient Perform oblique gradient shape, three

patterns, phase encode three axes
peloop Start switchable phase-encode loop
phase_encode3_gradient Set general oblique gradient, phase

encode three axes
phase-encode3_gradpulse Perform general oblique gradient pulse,

phase encode three axes
phase_encode3_oblshapedgradient Perform general oblique shaped

gradient, three patterns, phase encode
three axes

poffset Return frequency offset based on
position

poffset_list Create offset array from position array
position_offset Set frequency based on position
position_offset_list Create offset array from position array
psg_abort Abort PSG process at run-time
pulse Perform pulse with assigned values on

observe channel
putarray Set all values of arrayed parameter from

pulse sequence
putCmd Send command to VnmrJ from pulse

sequence
putstring Set string parameter from pulse

sequence
putvalue Set nuneric parameter from pulse

sequence

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 299

parallelacquire_obs Acquire data explicitly in parallel section

Syntax: parallelacquire_obs(delay,points,dwell)

double delay; /* time duration before
the next event */

double points; /* number of points
(complex pairs) to acquire */

double dwell; /* dwell time, seconds */

Description: Combination of the startacq_obs, acquire_obs, and
endacq_obs statements to be used in "obs" parallel
sections of a pulse sequence.

Arguments: The first argument (delay) corresponds to the
argument used by startacq.

The next two arguments correspond to the
arguments used by acquire.

parallelacquire_rcvr Acquire data explicitly in parallel section

Syntax: parallelacquire_rcvr(delay,points,dwell)

double delay; /* time duration before
the next event */

double points; /* number of points
(complex pairs) to acquire */

double dwell; /* dwell time, seconds */

Description: Combination of the startacq_rcvr, acquire_rcvr,
and endacq_rcvr statements to be used in "rcvr"
parallel sections of a pulse sequence.

Arguments: The first argument (delay) corresponds to the
argument used by startacq.

Related: acquire_obs Acquire data explicitly in
parallel section

acquire_rcvr Acquire data explicitly in
parallel section

startacq_obs Initialize explicit
acquisition in parallel
section

startacq_rcvr Initialize explicit
acquisition in parallel
section

endacq_obs End explicit acquisition
in parallel section

endacq_rcvr End explicit acquisition
in parallel section

parallelacquire_rcvr Acquire data explicitly in
parallel section

300 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

The next two arguments correspond to the
arguments used by acquire.

parallelend End parallel section of pulse sequence

Syntax: double parallelend()

double return /* duration of longest
parallel section, seconds */

Description: End a parallel section of a pulse sequence. The
parallelend statement must follow one or more
parallelstart statements. It determines the
duration of the longest parallel section and sets this
as the total duration, synchronizes each of the
durations of the other parallel sections with a
synchronization delay and applies a synchronous
delay to the other channels equal to the total delay.
parallelend returns the total delay in seconds.

Arguments: None.

Examples: double duration;

parallelstart(“obs”);

 delay(d3/2.0);

 pulse(pw,oph);

 delay(d3/2.0);

parallelstart(“dec”);

 delay(d2);

 decpulse(pw,oph);

duration = parallelend();

Related: acquire_obs Acquire data explicitly in
parallel section

acquire_rcvr Acquire data explicitly in
parallel section

startacq_obs Initialize explicit
acquisition in parallel
section

startacq_rcvr Initialize explicit
acquisition in parallel
section

endacq_obs End explicit acquisition
in parallel section

endacq_rcvr End explicit acquisition
in parallel section

parallelacquire_obs Acquire data explicitly in
parallel section

Related: parallelstart Start parallel section of
pulse sequence

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 301

parallelstart Start parallel section of pulse sequence

Syntax: void parallelstart(chnl)

char *chnl /* The designated parallel
channel name */

Description: Start a parallel section of a pulse sequence.
Following a parallelstart statement until the
next parallelstart or parallelend statement,
pulse- sequence statements are executed solely on
the channel designated by chnl. Synchronous
delays are not applied to other channels, as is done
outside of parallelstart-parallelend.
Multiple parallel sections begun by
parallelstart, before parallelend start
executing at the same time in parallel. The
parallelend statement applies a synchronization
delay at the end of each parallel section so that all
sections have the duration of the longest section,
the total delay. A set of parallel sections must
include every channel for which there is activity
during the parallel period. The total delay is applied
synchronously with the parallel sections to any
channels that are not included. If a parallelsync
statement is included in a parallel section the
synchronization delay is applied at the location of
the parallelsync statement rather than at the
end of the parallel section.

Only statements for the designated channel are
allowed in a parallel section, or those statements for
calculation that do not designate a channel. The
delay statement is interpreted to be for only the
designated channel. Real- time statements that
create delays such as loop-endloop,
ifzero-elsenz-endif and vdelay are not
allowed because they can invalidate the
synchronization created by parallelend. Special
fixed loops rlloop-rlendloop and
kzloop-kzendloop are provided for use in a
parallel section. Real- time statements or misplaced
pulse- sequence statements in a parallel section will
cause the pulse sequence to fail to operate or
operate in an unpredictable manner. Statements
that reference more than one channel such as
simpulse are not allowed in a parallel section.

The xgate and rotorsync statements are allowed
in a parallel section with the understanding that
xgate halts and resumes all channels
synchronously. One must be aware of the effect of

parallelsync Position parallel
synchronization delays

302 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

xgate and rotorsync on the other parallel
sections.

Arguments: chnl is a string keyword enclosed in double quotes
designating the channel of the parallel section. The
possible keywords are obs, dec, dec2, dec3, dec4,
grad, or rcvr.

Examples: This example places a pulse on the obs channel in
the middle of the delay d2_max. As d2 varies from
0.0 to d2_max the pulse on dec moves from the
beginning of the d2_max delay to the end.

parallelstart(“obs”);

 delay(d2_max/2.0);

 pulse(pw,oph);

 delay(d3/2.0);

parallelstart(“dec”);

 delay(d2);

 decpulse(pw,oph);

parallelend();

parallelsync Position parallel synchronization delays

Syntax: void parallelsync()

Description: The parallelsync statement applies the
synchronization delay for a parallel section,
calculated by parallelend as a delay at the
position of the parallelsync statement. If the
parallelsync statement is not present in a
section the synchronization delay is applied at the
end of the section.

Arguments: None.

Examples: parallelstart(“obs”);

Related: endloop End real- time loop
kzendloop End real- time loop with

fixed duration
kzloop Start real- time with fixed

duration
loop Start real- time loop
parallelend End parallel section of

pulse sequence
parallelsync Position parallel

synchronization delays
rlendloop End real- time loop with

fixed count
rlloop Start real- time with fixed

count

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 303

 delay(d3/2.0);

 pulse(pw,oph);

 delay(d3/2.0);

parallelstart(“dec”);

 parallelsync();

 decpulse(pw,oph);

 delay(d2);

parallelend();

pe_gradient Set oblique gradient, phase encode one axis

Syntax: pe_gradient(stat1,stat2,stat3,step2,vmult2)
double stat1,stat2,stat3; /* static gradient
amplitudes, Gauss/cm */
double step2; /* gradient-amplitude
stepsize, Gauss/cm */
codeint vmult2; /* real-time index
of the steps */

Description: Apply a static, oblique gradient with a variable
phase- encode gradient along the second logical axis
(phase axis).

The pulse sequence aborts at run- time if the DACs
on a particular gradient are overrun, after the
angles and amplitude have been resolved.

Arguments: stat1, stat2, stat3 are the three amplitudes of the
static portion of the gradient, in Gauss/cm, along
the three logical axes, read, phase, and slice,
respectively.

step2 is the amplitude stepsize, in Gauss/cm, for
the variable gradient along the phase axis.

vmult2 is a real- time index to the steps of the
variable gradient. The argument vmult2 can be a
real- time variable (v1 to v42, oph, etc), a real- time
constant (zero, one, etc), or a real- time table (t1
to t60).

Examples: pe_gradient(0.0,-sgpe*nv/2.0,gss,sgpe,v6);

Related: parallelend End parallel section of
pulse sequence

parallelstart Start parallel section of
pulse sequence

Related: mashapedgradient Perform three- axis
shaped gradient at magic
angle

obl_shaped3gradient Perform three- axis
oblique shaped gradient,
three patterns

304 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

pe2_gradient Set oblique gradient, phase encode two axes

Syntax: pe2_gradient(stat1,stat2,stat3,step2,step3,vmult2,vm
ult3)
double stat1,stat2,stat3; /* static gradient
amplitudes, Gauss/cm */
double step2,step3; /*
gradient-amplitude stepsizes, Gauss/cm */
codeint vmult2,vmult3 /* real-time indexes
of the steps */

Description: Apply a static, oblique gradient with variable
phase- encode gradients along the second (phase)
and third (slice) logical axes.

The pulse sequence aborts at run- time if the DACs
on a particular gradient are overrun, after the
angles and amplitude have been resolved.

Arguments: stat1, stat2, stat3 are the three amplitudes of the
static portion of the gradient, in Gauss/cm, along
the three logical axes, read, phase, and slice,
respectively.

pe2_gradient Perform oblique
gradient, phase encode
two axes

pe3_gradient Perform oblique
gradient, phase encode
three axes

pe_shapedgradient Perform oblique
gradient, one pattern,
phase encode one axis

pe_shaped3gradient Perform oblique
gradient, three patterns,
phase encode one axis

pe2_shapedgradient Perform oblique
gradient, one pattern,
phase encode two axes

pe2_shaped3gradient Perform oblique
gradient, three patterns,
phase encode two axes

pe3_shapedgradient Perform oblique
gradient, one pattern,
phase encode three axes

pe3_shaped3gradient Perform oblique
gradient, three
patterns,phase encode
three axes

phase_encode3oblsha

pedgradient Perform general oblique
shaped gradient, phase
encode three axes

rot_angle Set user- defined oblique
gradient- coordinate
rotation axes

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 305

step2, step3 are the amplitude stepsizes, in
Gauss/cm, for the variable gradients along the
phase and slice axes.

vmult2, vmult3 are real- time indexes to the steps
of the variable gradients. These arguments can be a
real- time variables (v1 to v42, oph, etc), real- time
constants (zero, one, etc), or real- time tables (t1 to
t60).

Examples: pe2_gradient(gro,sgpe*nv/2.0,sgpe2*nv2/2.0,sgpe,sg
pe2,v6,v8);

pe3_gradient Set oblique gradient, phase encode three axes

Syntax: pe3_gradient(stat1,stat2,stat3,step1,step2,step3,vmu
lt1,vmult2,vmult3)
double stat1,stat2,stat3; /* static gradient
amplitudes, Gauss/cm */
double step1,step2,step3;
/*gradient-amplitude stepsizes, Gauss/cm */

Related: mashapedgradient Perform three- axis shaped
gradient at magic angle

obl_shaped3gradient Perform three- axis oblique
shaped gradient, three
patterns

pe_gradient Perform oblique gradient,
phase encode one axis

pe3_gradient Perform oblique gradient,
phase encode three axes

pe_shapedgradient Perform oblique gradient,
one pattern, phase encode
one axis

pe_shaped3gradient Perform oblique gradient,
three patterns, phase
encode one axis

pe2_shapedgradient Perform oblique gradient,
one pattern, phase encode
two axes

pe2_shaped3gradient Perform oblique gradient,
three patterns, phase
encode two axes

pe3_shapedgradient Perform oblique gradient,
one pattern, phase encode
three axes

pe3_shaped3gradient Perform oblique gradient,
three patterns,phase
encode three axes

phase_encode3oblsha
pedgradient

Perform general oblique
shaped gradient, phase
encode three axes

rot_angle Set user- defined oblique
gradient- coordinate
rotation axes

306 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

codeint vmult1,vmult2,vmult3; /*
real-time indexes of the steps */

Description: Apply a static, oblique gradient with variable
phase- encode gradients along the first (read),
second (phase), and third (slice) logical axes.

The pulse sequence aborts at run- time if the DACs
on a particular gradient are overrun, after the
angles and amplitude have been resolved.

Arguments: stat1, stat2, stat3 are the three amplitudes of the
static portion of the gradient, in Gauss/cm, along
the three logical axes, read, phase, and slice,
respectively.

step1, step2, step3 are the amplitude stepsizes,
in Gauss/cm, for the variable gradients along the
read, phase, and slice axes.

vmult1, vmult2, vmult3 are real- time indexes to the
steps of the variable gradients. These arguments can
be a real- time variables (v1 to v42, oph, etc),
real- time constants (zero, one, etc), or real- time
tables (t1 to t60).

Examples: pe3_gradient(gro,sgpe*nv/2.0,sgpe2*nv2/2.0,0.0,sgp
e,sgpe2,zero,v6,v8);

Related: mashapedgradient Perform three- axis shaped
gradient at magic angle

obl_shaped3gradient Perform three- axis oblique
shaped gradient, three
patterns

pe_gradient Perform oblique gradient,
phase encode one axis

pe2_gradient Perform oblique gradient,
phase encode two axes

pe_shapedgradient Perform oblique gradient,
one pattern, phase encode
one axis

pe_shaped3gradient Perform oblique gradient,
three patterns, phase
encode one axis

pe2_shapedgradient Perform oblique gradient,
one pattern, phase encode
two axes

pe2_shaped3gradient Perform oblique gradient,
three patterns, phase
encode two axes

pe3_shapedgradient Perform oblique gradient,
one pattern, phase encode
three axes

pe3_shaped3gradient Perform oblique gradient,
three patterns,phase encode
three axes

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 307

pe_shapedgradien Perform oblique gradient shape, one pattern, phase encode
one axis

Syntax: pe_shapedgradient(pattern,width,stat1,stat2,stat3,st
ep2,vmult2,wait)
char *pattern; /* name of .GRD
file */
double width; /* duration of
gradient shape, seconds */
double stat1,stat2,stat3; /* static gradient
amplitudes, Gauss/cm */
double step2; /* gradient-amplitude
stepsize, Gauss/cm */
codeint vmult2; /* real-time index
of steps */
int wait; /* WAIT or NOWAIT */

Description: Apply a static, oblique, shaped gradient with a
single pattern for all three axes and a variable
phase- encode gradient along the second (phase)
logical axis in either WAIT or NOWAIT mode.

The pulse sequence aborts at run- time if the DACs
on a particular gradient are overrun, after the
angles and amplitude have been resolved.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .GRD extension to store
the gradient shape.

width is the duration of the gradient shape, in
seconds.

stat1, stat2, stat3 are the three components of
the static portion of the gradient, in Gauss/cm,
along the three logical axes, read, phase and slice,
respectively.

step2 is the stepsize, in Gauss/cm, for the variable
gradient along the phase axis.

vmult2 is a real- time index to the steps of the
variable gradient. This argument can be a real- time
variable (v1 to v42, oph, etc), a real- time constant
(zero, one, oph, etc), or a real- time table (t1 to
t60).

wait is a keyword with values of WAIT or NOWAIT,
that determines the delay until the execution of
next statement. If the value is WAIT, the delay is
width seconds. If the value is NOWAIT, the delay is
0.0 seconds.

phase_encode3oblsha
pedgradient

Perform general oblique
shaped gradient, phase
encode three axes

rot_angle Set user- defined oblique
gradient- coordinate
rotation axes

308 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

pe_shaped3gradient Perform oblique gradient shape, three patterns, phase encode one axis

Syntax: pe_shapedgradient(pat1,pat2,pat3,width,stat1,stat2,s
tat3,step2,vmult2,wait)
char *pat1,*pat2,*pat3; /* names of .GRD
files */
double width; /* duration of
gradient shape, seconds */
double stat1,stat2,stat3; /* static gradient
amplitudes, Gauss/cm */
double step2; /* gradient-amplitude
stepsize, Gauss/cm */
codeint vmult2; /* real-time index
of steps */
int wait; /* WAIT or NOWAIT */

Description: Apply a static, oblique, shaped gradient with a
separate pattern for each axis and a variable

Related: mashapedgradient Perform three- axis shaped
gradient at magic angle

obl_shaped3gradient Perform three- axis oblique
shaped gradient, three
patterns

pe_gradient Perform oblique gradient,
phase encode one axis

pe2_gradient Perform oblique gradient,
phase encode two axes

pe3_gradient Perform oblique gradient,
phase encode three axes

pe_shaped3gradient Perform oblique gradient,
three patterns, phase
encode one axis

pe2_shapedgradient Perform oblique gradient,
one pattern, phase encode
two axes

pe2_shaped3gradient Perform oblique gradient,
three patterns, phase
encode two axes

pe3_shapedgradient Perform oblique gradient,
one pattern, phase encode
three axes

pe3_shaped3gradient Perform oblique gradient,
three patterns,phase
encode three axes

phase_encode3oblsha
pedgradient

Perform general oblique
shaped gradient, phase
encode three axes

rot_angle Set user- defined oblique
gradient- coordinate
rotation axes

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 309

phase- encode gradient along the second (phase)
logical axis in either WAIT or NOWAIT mode.

The pulse sequence aborts at run- time if the DACs
on a particular gradient are overrun, after the
angles and amplitude have been resolved.

Arguments: pat1, pat2, pat3 are the root names of text files in
the shapelib directory with a .GRD extension to
store the gradient shapes.

width is the duration of the gradient shape, in
seconds.

stat1, stat2, stat3 are the three components of
the static portion of the gradient, in Gauss/cm,
along the three logical axes, read, phase, and slice,
respectively.

step2 is the stepsize, in Gauss/cm, for the variable
gradient along the phase axis.

vmult2 is a real- time index to the steps of the
variable gradient. This argument can be a real- time
variable (v1 to v42, oph, etc), a real- time constant
(zero, one, etc), or a real- time table (t1 to t60).

wait is a keyword with values of WAIT or NOWAIT,
that determines the delay until the execution of
next statement. If the value is WAIT, the delay is
width seconds. If the value is NOWAIT, the delay is
0.0 seconds.

Related: mashapedgradient Perform three- axis shaped
gradient at magic angle

obl_shaped3gradient Perform three- axis oblique
shaped gradient, three
patterns

pe_gradient Perform oblique gradient,
phase encode one axis

pe2_gradient Perform oblique gradient,
phase encode two axes

pe3_gradient Perform oblique gradient,
phase encode three axes

pe_shapedgradient Perform oblique gradient,
one pattern, phase encode
one axis

pe2_shapedgradient Perform oblique gradient,
one pattern, phase encode
two axes

pe2_shaped3gradient Perform oblique gradient,
three patterns, phase
encode two axes

pe3_shapedgradient Perform oblique gradient,
one pattern, phase encode
three axes

pe3_shaped3gradient Perform oblique gradient,
three patterns,phase
encode three axes

310 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

pe2_shapedgradient Perform oblique gradient shape, one pattern, phase encode
two axes

Syntax: pe2_shapedgradient(pattern,width,stat1,stat2,stat3,s
tep2,step3,vmult2,vmult3,wait)
char *pattern; /* name of .GRD file
*/
double width; /* duration of
gradient shape, seconds */
double stat1,stat2,stat3; /* static gradient
amplitudes, Gauss/cm */
double step2,step3; /*
gradient-amplitude stepsizes, Gauss/cm */
codeint vmult2,vmult3; /* real-time index
of steps */
int wait; /* WAIT or NOWAIT */

Description: Apply a static, oblique, shaped gradient with a
single pattern for all three axes and a variable
phase- encode gradient along the second (phase),
and third (slice) logical axes in either WAIT or
NOWAIT mode.

The pulse sequence aborts at run- time if the DACs
on a particular gradient are overrun, after the
angles and amplitude have been resolved.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .GRD extension to store
the gradient shape.

width is the duration of the gradient shape, in
seconds.

stat1, stat2, stat3 are the three components of
the static portion of the gradient, in Gauss/cm,
along the three logical axes, read, phase, and slice,
respectively.

step2, step3 are the stepsizes, in Gauss/cm, for the
variable gradients along the phase and slice axes.

vmult2, vmult3 are real- time indexes to the steps
of the variable gradients. These arguments can be
real- time variables (v1 to v42, oph, etc), real- time
constants (zero, one, etc), or real- time tables (t1 to
t60).

wait is a keyword with values of WAIT or NOWAIT,
that determines the delay until the execution of
next statement. If the value is WAIT, the delay is
width seconds. If the value is NOWAIT, the delay is
0.0 seconds.

phase_encode3oblsha
pedgradient

Perform general oblique
shaped gradient, phase
encode three axes

rot_angle Set user- defined oblique
gradient- coordinate
rotation axes

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 311

pe2_shaped3gradient Perform oblique gradient shape, three patterns, phase
encode two axes

Syntax: pe2_shaped3gradient(pat1,pat2,pat3,width,stat1,stat2
,stat3,step2,step3,vmult2,vmult3,wait)
char *pat1,*pat2,*pat3; /* names of .GRD
files */
double width; /* duration of
gradient shape, seconds */
double stat1,stat2,stat3; /* static gradient
amplitudes, Gauss/cm */
double step2,step3; /*
gradient-amplitude stepsizes, Gauss/cm */
codeint vmult2,vmult3; /* real-time index
of steps */
int wait; /* WAIT or NOWAIT */

Description: Apply a static, oblique, shaped gradient with a
separate pattern for each axis and variable
phase- encode gradients along the second (phase)

Related: mashapedgradient Perform three- axis shaped
gradient at magic angle

obl_shaped3gradient Perform three- axis oblique
shaped gradient, three
patterns

pe_gradient Perform oblique gradient,
phase encode one axis

pe2_gradient Perform oblique gradient,
phase encode two axes

pe3_gradient Perform oblique gradient,
phase encode three axes

pe_shapedgradient Perform oblique gradient,
one pattern, phase encode
one axis

pe_shaped3gradient Perform oblique gradient,
three patterns, phase
encode one axis

pe2_shaped3gradient Perform oblique gradient,
three patterns, phase
encode two axes

pe3_shapedgradient Perform oblique gradient,
one pattern, phase encode
three axes

pe3_shaped3gradient Perform oblique gradient,
three patterns, phase
encode three axes

phase_encode3oblsha
pedgradient

Perform general oblique
shaped gradient, phase
encode three axes

rot_angle Set user- defined oblique
gradient- coordinate
rotation axes

312 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

and third (slice) logical axes in either WAIT or
NOWAIT mode.

The pulse sequence aborts at run- time if the DACs
on a particular gradient are overrun, after the
angles and amplitude have been resolved.

Arguments: pat1, pat2, pat3 are the root names of text files in
the shapelib directory with a .GRD extension to
store the gradient shapes.

width is the duration of the gradient shape, in
seconds.

stat1, stat2, stat3 are the three components of
the static portion of the gradient, in Gauss/cm,
along the three logical axes, read, phase, and slice,
respectively.

step2, step3 are the stepsizes, in Gauss/cm, for the
variable gradients along the phase and slice axes.

vmult2, vmult3 are real- time indexes to the steps
of the variable gradients. These arguments can be
real- time variables (v1 to v42, oph, etc), real- time
constants (zero, one, oph, etc), or real- time tables
(t1 to t60).

wait is a keyword with values of WAIT or NOWAIT,
that determines the delay until the execution of
next statement. If the value is WAIT, the delay is
width seconds. If the value is NOWAIT, the delay is
0.0 seconds.

Related: mashapedgradient Perform three- axis shaped
gradient at magic angle

obl_shaped3gradient Perform three- axis oblique
shaped gradient, three
patterns

pe_gradient Perform oblique gradient,
phase encode one axis

pe2_gradient Perform oblique gradient,
phase encode two axes

pe3_gradient Perform oblique gradient,
phase encode three axes

pe_shapedgradient Perform oblique gradient,
one pattern, phase encode
one axis

pe_shaped3gradient Perform oblique gradient,
three patterns, phase
encode one axis

pe2_shapedgradient Perform oblique gradient,
one pattern, phase encode
two axes

pe3_shapedgradient Perform oblique gradient,
one pattern, phase encode
three axes

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 313

pe3_shapedgradient Perform oblique gradient shape, one pattern, phase encode three axes

Syntax: pe3_shapedgradient(pattern,width,stat1,stat2,stat3,s
tep1,step2,step3,vmult2,wait)
char *pattern; /* name of .GRD
file */
double width; /* duration of
gradient shape, seconds */
double stat1,stat2,stat3; /* static gradient
amplitudes, Gauss/cm */
double step1,step2,step3;
/*gradient-amplitude stepsizes, Gauss/cm */
codeint vmult2; /* real-time index
of steps */
int wait; /* WAIT or NOWAIT */

Description: Apply a static, oblique, shaped gradient with a
single pattern for all three axes and a variable
phase- encode gradient along the first (read),
second (phase), and third (slice) logical axes in
either WAIT or NOWAIT mode.

The pulse sequence aborts at run- time if the DACs
on a particular gradient are overrun, after the
angles and amplitude have been resolved.

Arguments: pattern is the root name of a text file in the
shapelib directory with a .GRD extension to store
the gradient shape.

width is the duration of the gradient shape, in
seconds.

stat1, stat2, stat3 are the three components of
the static portion of the gradient, in Gauss/cm,
along the three logical axes, read, phase, and slice,
respectively.

step1, step2, step3 are the stepsizes, in Gauss/cm,
for the variable gradients along the read, phase,
and slice axes.

vmult1, vmult2, vmult3 are real- time indexes to the
steps of the variable gradients. These arguments can
be real- time variables (v1 to v42, oph, etc),
real- time constants (zero, one, etc), or real- time
tables (t1 to t60).

wait is a keyword with values of WAIT or NOWAIT,
that determines the delay until the execution of

pe3_shaped3gradient Perform oblique gradient,
three patterns, phase
encode three axes

phase_encode3oblsha
pedgradient

Perform general oblique
shaped gradient, phase
encode three axes

rot_angle Set user- defined oblique
gradient- coordinate
rotation axes

314 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

next statement. If the value is WAIT, the delay is
width seconds. If the value is NOWAIT, the delay is
0.0 seconds.

pe3_shaped3gradient Perform oblique gradient shape, three patterns, phase
encode three axes

Syntax: pe3_shaped3gradient(pat1,pat2,pat3,width,stat1,stat2
,stat3,step1,step2,step3,vmult2,wait)
char *pat1,*pat2,*pat3; /* names of .GRD
files */
double width; /* duration of
gradient shape, seconds */
double stat1,stat2,stat3; /* static gradient
amplitudes, Gauss/cm */
double step1,step2,step3;
/*gradient-amplitude stepsizes, Gauss/cm */
codeint vmult2; /* real-time index
of steps */
int wait; /* WAIT or NOWAIT */

Related: mashapedgradient Perform three- axis shaped
gradient at magic angle

obl_shaped3gradient Perform three- axis oblique
shaped gradient, three
patterns

pe_gradient Perform oblique gradient,
phase encode one axis

pe2_gradient Perform oblique gradient,
phase encode two axes

pe3_gradient Perform oblique gradient,
phase encode three axes

pe_shapedgradient Perform oblique gradient,
one pattern, phase encode
one axis

pe_shaped3gradient Perform oblique gradient,
three patterns, phase
encode one axis

pe2_shapedgradient Perform oblique gradient,
one pattern, phase encode
two axes

pe2_shaped3gradient Perform oblique gradient,
three patterns, phase
encode two axes

pe3_shaped3gradient Perform oblique gradient,
three patterns, phase
encode three axes

phase_encode3oblsha
pedgradient

Perform general oblique
shaped gradient, phase
encode three axes

rot_angle Set user- defined oblique
gradient- coordinate rotation
axes

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 315

Description: Apply a static, oblique, shaped gradient with a
separate pattern for each axis and variable
phase- encode gradients along the first (read),
second (phase), and third (slice) logical axes in
either WAIT or NOWAIT mode.

The pulse sequence aborts at run- time if the DACs
on a particular gradient are overrun, after the
angles and amplitude have been resolved.

Arguments: pat1, pat2, pat3 are the root names of text files in
the shapelib directory with a .GRD extension to
store the gradient shapes.

width is the duration of the gradient shape, in
seconds.

stat1, stat2, stat3 are the three components of
the static portion of the gradient, in Gauss/cm,
along the three logical axes, read, phase, and slice,
respectively.

step1, step2, step3 are the stepsizes, in Gauss/cm,
for the variable gradients along the read, phase,
and slice axes.

vmult1, vmult2, vmult3 are real- time indexes to the
steps of the variable gradients. These arguments can
be real- time variable (v1 to v42, oph, etc), real- time
constants (zero, one, etc), or real- time tables (t1 to
t60).

wait is a keyword with values of WAIT or NOWAIT,
that determines the delay until the execution of
next statement. If the value is WAIT, the delay is
width seconds. If the value is NOWAIT, the delay is
0.0 seconds.

Related: mashapedgradient Perform three- axis
shaped gradient at magic
angle

obl_shaped3gradient Perform three- axis
oblique shaped gradient,
three patterns

pe_gradient Perform oblique gradient,
phase encode one axis

pe2_gradient Perform oblique gradient,
phase encode two axes

pe3_gradient Perform oblique gradient,
phase encode three axes

pe_shapedgradient Perform oblique gradient,
one pattern, phase
encode one axis

pe_shaped3gradient Perform oblique gradient,
three patterns, phase
encode one axis

pe2_shapedgradient Perform oblique gradient,
one pattern, phase
encode two axes

316 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

peloop Start switchable phase-encode loop

Syntax: peloop(state,max_count,apvl,apv2)
char state; /* compressed or standard */
double max_count; /* numeric value to
initialize apv1 */
codeint apv1; /* real-time variable with
maximum count */
codeint apv2; /* real-time index of steps */

Description: Execute a sequence- switchable loop that can use
real- time variables in what is known as a
compressed loop, or can use the standard arrayed
features of PSG. In the imaging sequences, it uses
the third character of the seqcon string parameter
seqcon[2] for the state argument. The statement is
used in conjunction with the endpeloop statement.

peloop differs from msloop in how it sets the apv2
variable in standard arrayed mode (state is 's'). In
standard arrayed mode, apv2 is set to nth2D-1 if
max_count is greater than zero. nth2D is a PSG
internal counting variable for the second dimension.
When in the compressed mode, apv2 counts from
zero to max_count-1.

Arguments: state is either 'c' to designate the compressed
mode, or 's' to designate the standard arrayed
mode.

apv1 is a real- time variable that holds the
maximum count.

apv2 is a real- time variable that holds the current
count

pe2_shaped3gradient Perform oblique gradient,
three patterns, phase
encode two axes

pe3_shapedgradient Perform oblique gradient,
one pattern, phase
encode three axes

phase_encode3oblsha
pedgradient

Perform general oblique
shaped gradient, phase
encode three axes

rot_angle Set user- defined oblique
gradient- coordinate
rotation axes

Related: msloop Start switchable multislice loop
endloop End real- time loop
endmsloop End switchable multislice loop
endpeloop End switchable phase- encode loop
loop Start real- time loop
loopcheck Check number of FIDS for

compressed acquisition

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 317

phase_encode3_gradient Set general oblique gradient, phase encode three axes

Syntax: phase_encode3_gradient(width,stat1,stat2,stat3,step1
,step2,step3,vmult1,vmult2,vmult3,lim1,lim2,
lim3)
double width; /*duration of
gradient shape, seconds */
double stat1,stat2,stat3; /*static gradient
amplitudes, Gauss/cm */
double step1,step2,step3;
/*gradient-amplitude stepsizes, Gauss/cm */
codeint vmult1,vmult2,vmult3; /* real-time
indexes of steps */
double lim1,lim2,lim3; /* maximum
gradient-amplitudes */

Description: Apply a static, oblique, gradient with variable
phase- encode gradients along the first (read),
second (phase), and third (slice) logical axes.

This statement accepts limits for the three stepsizes
to avoid overrunning the DACs, after the angles and
amplitude have been resolved.

Arguments: stat1, stat2, stat3 are the three components of
the static portion of the gradient, in Gauss/cm,
along the three logical axes, read, phase, and slice,
respectively.

step1, step2, step3 are the stepsizes, in Gauss/cm,
for the variable gradients along the read, phase,
and slice axes.

vmult1, vmult2, vmult3 are a real- time indexes to
the steps of the variable gradients. These arguments
can be real- time variables (v1 to v42, oph, etc),
real- time constants (zero, one, etc), or real- time
tables (t1 to t60).

lim1,lim2,lim3 are maximum stepsizes in
Gauss/cm.

Related: mashapedgradient Perform three- axis
shaped gradient at magic
angle

obl_shaped3gradient Perform three- axis
oblique shaped gradient,
three patterns

pe3_shaped3gradient Perform oblique gradient,
three patterns, phase
encode three axes

phase_encode3_gradpu
lse

Perform general oblique
shaped gradient pulse,
phase encode three axes

phase_encode3oblshap
edg radient

Perform general oblique
shaped gradient, phase
encode three axes

318 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

phase_encode3_gradpulse Perform general oblique gradient pulse, phase encode three axes

Syntax: phase_encode3_gradient(width,stat1,stat2,stat3,step1
,step2,step3,vmult1,vmult2,vmult3,lim1,lim2,
lim3)

Syntax: double width; /*duration of gradient pulse,
seconds */
double stat1,stat2,stat3; /* static gradient
amplitudes, Gauss/cm */
double step1,step2,step3;
/*gradient-amplitude stepsizes, Gauss/cm */
codeint vmult1,vmult2,vmult3; /* real-time
indexes of steps */
double lim1,lim2,lim3; /* maximum
gradient-amplitude steps */

Description: Apply a static, oblique, gradient pulse with variable
phase- encode gradients along the first (read),
second (phase), and third (slice) logical axes.

This statement accepts limits for the three stepsizes
to avoid overrunningthe DACs, after the angles and
amplitude have been resolved.

Arguments: width is the duration of the gradient pulse, in
seconds.

stat1, stat2, stat3 are the three components of
the static portion of the gradient, in Gauss/cm,
along the three logical axes, read, phase, and slice,
respectively.

step1, step2, step3 are the stepsizes, in Gauss/cm,
for the variable gradients along the read, phase,
and slice axes.

vmult1, vmult2, vmult3 are a real- time indexes to
the steps of the variable gradients. These arguments
can be real- time variables (v1 to v42, oph, etc),
real- time constants (zero, one, etc), or real- time
tables (t1 to t60).

lim1,lim2,lim3 are maximum stepsizes in
Gauss/cm.

rot_angle Set user- defined oblique
gradient- coordinate
rotation axes

Related: mashapedgradient Perform three- axis shaped
gradient at magic angle

obl_shaped3gradient Perform three- axis oblique
shaped gradient, three
patterns

pe3_shaped3gradient Perform oblique gradient,
three patterns, phase
encode three axes

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 319

phase_encode3_oblshapedgradient Perform general oblique gradient shape, three patterns, phase encode
three axes

Syntax: phase_encode3_oblshapedgradient(pat1,pat2,pat3,width
,stat1,stat2,stat3,step1,step2,step3,vmult1,
vmult2,vmult3,lim1,lim2,lim3,loops,wait,tag)
char *pat1,*pat2,*pat3; /* names of .GRD
files */
double width; /* duration of
gradient shape in seconds */
double stat1,stat2,stat3; /* static gradient
amplitudes, Gauss/cm */
double step1,step2,step3;
/*gradient-amplitude stepsizes, Gauss/cm */
codeint vmult1,vmult2,vmult3; /* real-time
indexes of steps */
double lim1,lim2,lim3; /* maximum
gradient-amplitudes */
int loops; /* number of times
to loop */
int wait; /* WAIT or NOWAIT */
int tag; /*function to be
determined*/

Description: Apply a static, oblique, shaped gradient with a
separate pattern for each axis and variable
phase- encode gradients along the first (read),
second (phase), and third (slice) logical axes in
either WAIT or NOWAIT mode with looping.

This statement accepts limits for the three stepsizes
to avoid overrunning the DACs, after the angles and
amplitude have been resolved.

Arguments: pat1, pat2, pat3 are the root names of text files in
the shapelib directory with a .GRD extension to
store the gradient shapes.

width is the duration of the gradient shape, in
seconds.

stat1, stat2, stat3 are the three components of
the static portion of the gradient, in Gauss/cm,
along the three logical axes, read, phase, and slice,
respectively.

step1, step2, step3 are the stepsizes, in Gauss/cm,
for the variable gradients along the read, phase,
and slice axes.

phase_encode3_gradi
ent

Perform general oblique
gradient, phase encode
three axes

phase_encode3oblsha
pedg radient

Perform general oblique
shaped gradient, phase
encode three axes

rot_angle Set user- defined oblique
gradient- coordinate
rotation axes

320 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

vmult1, vmult2, vmult3 are real- time indexes to the
steps of the variable gradients. These arguments can
be a real- time variables (v1 to v42, oph, etc),
real- time constants (zero, one, etc), or real- time
tables (t1 to t60).

lim1,lim2,lim3 are maximum stepsizes in
Gauss/cm.

wait is a keyword with values of WAIT or NOWAIT,
that determines the delay until the execution of
next statement. If the value is WAIT, the delay is
width seconds. If the value is NOWAIT, the delay is
0.0 seconds.

tag is a keyword to be determined.

poffset Return frequency offset based on position

Syntax: offset = poffset(pos,gradlvl);
double pos; /* slice position, cm */
double grad; /* gradient amplitude,
Gauss/cm */

Description: Returns a frequency offset value (in Hz) from
position and conjugate gradient values. Does not set
the frequency generator device.

Arguments: pos is the slice position, in cm.

gradlvl is the gradient amplitude in Gauss/cm,
used in the slice selection process.

Related: mashapedgradient Perform three- axis
shaped gradient at
magic angle

obl_shaped3gradient Perform three- axis
oblique shaped
gradient, three
patterns

pe3_shaped3gradient Perform oblique
gradient, three
patterns, phase
encode three axes

phase_encode3_gradient Perform general
oblique gradient,
phase encode three
axes

phase_encode3_gradpulse Perform general
oblique shaped
gradient pulse, phase
encode three axes

rot_angle Set user- defined
oblique
gradient- coordinate
rotation axes

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 321

poffset_list Create offset array from position array

Syntax: poffset_list(posarray,gradlvl,ns,apv1)
double posarray[]; /* position values, cm */
double gradlvl; /* gradient amplitude,
Gauss/cm */
double ns; /* number of slices */
codeint apv1; /* real-time index
for slices */

Description: Set the rf frequency from a position list, conjugate
gradient value and a real time index. poffset_list
is functionally the same as position_offset_list
except that poffset_list takes the value of resfrq
from the resto parameter, assumes the device is
the observe channel OBSch, and assumes that the
list number is zero.

Arguments: posarray is an array of position values, in cm.

gradlvl is the gradient amplitude in Gauss/cm,
used in the slice selection process.

nslices is the number of slices or position values.

apv1 is an index for the slices or position values.
It can be real- time variable (v1 to v42) or table (t1
to t60).

Examples: poffset_list(pss,gss,ns,v8);

Related: offsetglist Create offset array from
position and
gradient- amplitude
array

offsetlist Create offset array from
position and gradient
amplitude

poffset_list Create offset array from
position array

position_offset Retrun frequency offset
based on position

position_offset_list Create offset array from
position array

Related: getarray Obtain all values from
arrayed parameter

offsetglist Create offset array from
position and
gradient- amplitude array

offsetlist Create offset array from
position and gradient
amplitude

poffset Return frequency offset
based on position

322 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

position_offset Return frequency offset based on position

Syntax: position_offset(pos,gradlvl,resfrq,device)
double pos; /* slice position, cm */
double gradlvl; /* gradient amplitude,
Gauss/cm */
double resfrq; /* resonance offset, Hz */
int device; /* OBSch, DECch, DEC2ch,
or DEC3ch */

Description: Set the rf frequency from position and conjugate
gradient values.

Arguments: pos is the slice position, in cm.

gradlvl is the gradient amplitude in Gauss/cm,
used in the slice selection process.

resfrq is the resonance offset value in Hz for the
nucleus of interest.

device is one of the global integer constants OBSch
(observe channel), DECch (first decoupler), DEC2ch
(second decoupler), DEC3ch (third decoupler), or
DEC4ch (fourth decoupler).

Examples: position_offset(pos1,gvox1,resto,OBSch);

position_offset_list Create offset array from position array

Syntax: position_offset_list(posarray,gradlvl,ns,resfrq,devi
ce,listId,apv1)
double posarray[]; /* slice position, cm */
double gradlvl; /* gradient amplitude,

position_offset Retrun frequency offset
based on position

position_offset_list Create offset array from
position array

Related: getarray Obtain all values from
arraye parameter

offsetglist Create offset array from
position and
gradient- amplitude array

offsetlist Create offset array from
position and gradient
amplitude

poffset Return frequency offset
based on position

poffset_list Create offset array from
position array

position_offset_list Create offset array from
position array

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 323

Gauss/cm */
double ns; /* number of slices */
double resfrq; /* resonance offset, Hz
*/
int device; /* OBSch, DECch, DEC2ch,
or DEC3ch */
int listId; /* integer label of
input list */
codeint apv1; /* real-time index for
slices */

Description: Set the rf frequency from a position list, conjugate
gradient value and a real- time index. The real- time
index selects the slice offset value in the array. The
arrays provided in this statement must count zero
up; that is, array[0] must have the first slice
position and array[ns-1] the last.

Arguments: posarray is a list of position values, in cm.

gradlvl is the gradient amplitude, in Gauss/cm,
used in the slice selection process.

ns is the number of slices or position values.

resfrq is the resonance offset, in Hz, for the
nucleus of interest.

device is one of the global integer constants OBSch
(observe channel), DECch (first decoupler), DEC2ch
(second decoupler), DEC3ch (third decoupler), or
DEC4ch (fourth decoupler).

listId is a value for identifying a global list. The
first global list to be created is assigned 0 and each
subsequent list must is incremented by one.

apv1 is an index for the slices or position values.
It can be real- time variable (v1 to v42) or table (t1
to t60).

Related: getarray Obtain all values from arraye
parameter

offsetglist Create offset array from
position and
gradient- amplitude array

offsetlist Create offset array from
position and gradient
amplitude

poffset Return frequency offset based
on position

poffset_list Create offset array from
position array

position_offset Return frequency offset based
on position

324 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

psg_abort Abort the PSG process at run-time

Syntax: psg_abort(int_error)
int_error; /* error argument, must be
1 */

Description: Abort the PSG process at run- time. The acquisition
will not start. The int_error argument must be 1.

Arguments: int_error is the error argument, set to 1.

pulse Perform pulse with assigned values on observe channel

Syntax: pulse(width,phase)
double width; /* duration of pulse, seconds
*/
codeint phase; /* real-time quadrature-phase
multiplier for pulse */

Description: Set the quadrature phase and gate the observe
channel on and off at the current power level with
amplifier unblanking and blanking and set the
predelay to rof1 and the postdelay to rof2.

Arguments: width is the duration of the pulse, in seconds.

phase is a 90° multiplier for the first- decoupler
phase. The value must be a real- time variable (v1
to v42, oph, etc), a real- time constant (zero, one,
etc), or a real- time table (t1 to t60).

Examples: pulse(pw,v3);
pulse(2.0*pp,zero);

putarray Set all values of arrayed parameter from pulse sequence

Syntax: putarray(parname,values,N);
char *parname; /* name of arrayed parameter
*/
double values[]; /* array containing values

Related: abort_message Abort PSG process at run- time
and send a message to VnmrJ

text_error Send error message to VnmrJ
text_message Send message to VnmrJ
warn_message Send warning message to VnmrJ

Related: decpulse Perform pulse with assigned values
on first decoupler

decrgpulse Perform pulse on first decoupler
obspulse Perform pulse with assigned values

on observe channel
pulse Perform pulse with assigned values

on observe channel
rgpulse Perform pulse on observe channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 325

*/
int N; /* number of values */

Description: Set the values of a VnmrJ arrayed parameter
parname , if it exists, for both the current and the
processed trees, using the first N elements of an
arrayed variable values in the pulse sequence.

Arguments: parname is the name of a numeric parameter in
VnmrJ, to hold the array of values.

values is an arrayed variable containing numeric
values to return.

N is the number of values to return.
Examples: putarray("bvalue",bvalue,6);

putCmd Send command to VnmrJ from pulse sequence

Syntax: putCmd(command, varnames)
char *command; /* formatted command-line
expression */
varnames; /*char, int and double
variables to be formatted */

Description: Allow the execution of any expression on the VnmrJ
commandline from a pulse sequence. The argument
command is a formatted string containing the
command- line expression, using values of the
following variables, varnames. Formatting is similar
to the C printf statement.

The putCmd statement is often used to update
parameter values in the workspace. For example:

Related: getarray Obtain all values from
arrayed parameter

getval Obtain value of numeric
parameter

getstr Obtain value of string
parameter

offsetglist Create offset array from
position and
gradient- amplitude array

offsetlist Create offset array from
position and gradient
amplitude

poffset_list Create offset array from
position array

position_offset_list Create offset array from
position array

putCmd Send command to VnmrJ
from pulse sequence

putstring Set string parameter
from pulse sequence

putvalue Set numeric parameter
from pulse sequence

326 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

putCmd("setvalue('d1',%g,'processed')
setvalue('d1',%g,'current')",d1,d1);

updates d1 for both the current and processed
trees. It is important to explicitly convert from
seconds to microseconds when setting parameters
of the pulse subtype. For example:
putCmd("pw=%g", pw*1e6)

The go('check') command will execute the pulse
sequence and any putCmd statements without
starting an acquisition.

The integer checkflag has a value 1 if go('check')
was called. Use checkflag as a conditional if
putCmd should be run only with go('check'). For
example:
if (checkflag) putCmd("d1=%g",d1);

The putCmd function is only active for the first
increment of an arrayed or multidimensional
experiment.

putstring Set string parameter from pulse sequence

Syntax: putstring(parname,string);
char *parname; /* name of string
parameter */
char *string /* variable containing
the string */

Description: Set a string parameter parname , if it exists, for
both the current and the processed trees, using a
variable string in the pulse sequence.

Arguments: parname is the name of a numeric parameter in
VnmrJ.

string is a variable in the pulse sequence with a
string value to return.

Examples: putvalue("petable",petable_str);

Related getarray Obtain all values from arrayed
parameter

getval Obtain value of numeric parameter
getstr Obtain value of string parameter
putarray Set all values of arrayed parameter

from pulse sequence
putstring Set string parameter from pulse

sequence
putvalue Set numeric parameter from pulse

sequence

Related getarray Obtain all values from arrayed
parameter

getval Obtain value of numeric parameter

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 327

putvalue: Set numeric parameter from pulse sequence

Syntax: putvalue(parname,value);
char *parname; /* name of string
parameter */
double value /* variable containing
the string */

Description: Set a numeric parameter parname , if it exists, for
both the current and the processed trees, using a
variable value in the pulse sequence.

Arguments: parname is the name of a numeric parameter in
VnmrJ.

value is a variable in the pulse sequence with a
numeric value to return. .

Examples: putvalue("te",minte);

getstr Obtain value of string parameter
putarray Set all values of arrayed parameter

from pulse sequence
putCmd Send command to VnmrJ from pulse

sequence
putstring Set string parameter from pulse

sequence
putvalue Set numeric parameter from pulse

sequence

Related getarray Obtain all values from arrayed
parameter

getval Obtain value of numeric parameter
getstr Obtain value of string parameter
putarray Set all values of arrayed parameter

from pulse sequence
putCmd Send command to VnmrJ from pulse

sequence
putstring Set string parameter from pulse

sequence
putvalue Set numeric parameter from pulse

sequence

328 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

R

rcvroff Turn off receiver and unblank observe amplifier

Syntax: rcvroff()

Description: Gate all receivers off, put the respective T/R
switches in transmit mode, and unblank the
amplifiers associated with all observe channels. All
gates are changed simultaneously and the rcvroff
statement adds no time.

The rcvroff statement also sets an internal gate to
disable the automatic blanking at the end of
rgpulse.

It is usually not necessary to use rcvroff explicitly
in a sequence to control the receiver. The VNMRS
receiver is off by default, except during acquisition.
The startacq statement (either implicit or explicit)
executes rcvron and endacq executes rcvroff.
Amplifier blanking should be controlled explicitly by
obsblank and obsunblank.

The rcvroff statement is sometimes used instead
of obsunblank before the first pulse only to unblank
the observe amplifier. This use of rcvroff
suppresses the automatic blanking associated with
the end of rgpulse. There is no effect on the
receiver because it is already off by default.

For windowed, explicit acquisition, a pair of
statements rcvron and rcvroff are used around
the sample statement to toggle the receiver and
amplifier blanking, so as to allow pulses between
the sample periods.

Examples: rcvroff();

rcvroff Turn off receiver and unblank observe amplifier
rcvron Turn on receiver and blank observe amplifier
rcvrphase Set small-angle phase of receivers
rcvrstepsize Set small-angle phase stepsize of receivers
readMRIUserByte Read MRI user byte on MRI User Panel
recoff Turn off receiver gate
rcvrphase Set small-angle phase of the receiver
recon Turn on receiver gate
rlloop Start real-time loop with fixed count
rgradient Set DAC level of any one gradient axis
rlpower Set power level of any chaneel
rlpwrf Set fine power level of any channel
rotate Set standard oblique gradient-coordinate rotation axes
rot_angle Set user-defined oblique gradient-coordinate rotation axes
rot_angle_list Set oblique gradient-coordinate rotation axes from list
rotorperiod Obtain rotor period of external tachometer signal
rotorsync Execute time delay based on external tachometer signal

Related: obsblank Blank amplifier of observe channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 329

rcvron Turn on receiver and blank observe amplifier

Syntax: rcvron(time)

Description: Gate all receivers on, put the respective T/R
switches in receive mode, and blank the amplifiers
associated with all observe channels. Execute a
delay of time, in seconds.

The value of time is often set equal to alfa or ad,
parameters that define a minimum time for receiver
turn- on before sampling. Usually time is 4.0 to 6.0
s, but for windowed sampling of protons, it can be
as little as 0.5 µs.

The rcvron statement is executed by the startacq
statement. The rcvron and startacq statements are
usually preceeded by a delay with a duration of
rof2 or rd, parameters that define a time for probe
ringdown before the receiver is turned on.

The rcvron statement executes a minimum time
delay of rof3 if this parameter exists. If rof3 does
not exist, rcvron executes a minimum delay of
2.0 µs. The T/R switch is put in receiver mode and
the observe amplifier is blanked immediately. The
receiver is gated on after the delay of rof3. A final
delay of time - rof3 follows. The receiver and T/R
switch typically take 0.5 to 2.0 µs to turn on.

The delay of rof3 is present to ensure that the
receiver is not gated on immediately after a pulse.
The value of rof3 can be set to 0.0 if one can
ensure that there is another delay between the
pulse and rcvron. The value rof3 = 0.0 is often
used when rcvron is contained in a windowed,
explicit acquisition loop.

For windowed, explicit acquisition, a pair of
statements rcvron and rcvroff are used around
the sample statement to toggle the receiver and
amplifier blanking, so as to allow pulses between
the sample periods.

Arguments: time is the duration of the rcvron statement, in
seconds.

Examples: rcvron(alfa); rcvron(ad);

obsunblank Unblank amplifier of observe
channel

rcvroff Turn off receiver and unblank
observe amplifier

rcvron Turn on receiver gate and blank
observe amplifier

recon Turn on receiver gate
rgpulse Perform pulse on observe channel

Related: obsblank Blank amplifier of observe channel

330 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

rcvrphase Set small-angle phase of receivers.

Syntax: rcvrphase(multiplier)
codeint multiplier; /* real-time
receiver-phase multiplier */

Description: Designate the phase of all receivers to be the
product of a small- angle receiver stepsize and the
value of real- time variable, multiplier. The
small- angle receiver stepsize is set in degrees by
the rcvrstepsize(stepsize) statement. The
receiver phase is determined at acquisition as the
sum of a quadrature component, determined by the
real- time variable oph, and the small angle
component determined by the value of multiplier
and stepsize.

The phase of the acquired data is determined by a
calculation in the DSP processors of the digital
receiver and does not affect the phase coherence of
the RF of the frequency synthesizer. Unlike txphase
and xmtrphase, which change the transmitter phase
when executed, setreceiver and rcvrphase can be
used in either order with the same result.

Typically oph is set from a quadrature receiver
phase table, using the setreceiver statement and
rcvrphase is used to supply a constant small- angle
phase offset. In this case, use rcvrstepsize to set
the phase offset and fix multipler with a value of
1.0.

The need for a phase offset might arise in a
two- dimensional experiment if pulses or a spinlock
just before acquisition have a frequency offset
relative to the base frequency, set by tof. If the
offset pulses change increment to increment,
rcvrphase can be used with a changing stepsize
to remove the resulting phase modulation from the
F1 spectra.

The rcvrphase statement can be used in place of
setreceiver to implement a small- angle phase
table that varies scan- to- scan. The following
statements would replace setreceiver and
implement a phase table whose elements are
multiples of 30°.
rcvrstepsize(30.0);

settable(t1,ct,rcvrtable);

rcvrphase(v1);

obsunblank Unblank amplifier of observe
channel

rcvroff Turn off receiver and unblank
observe amplifier

rcvron Turn on receiver gate and blank
observe amplifier

recon Turn on receiver gate

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 331

getelem(t1,ct,v1);

assign(oph,zero);

In this example, rcvrtable contains integers that
multiply a 30° stepsize. The getelem statement is
needed because rcvrphase does not accept a table
argument. The assign statement guarantees that the
automatic values of the oph phase table, set by the
parameter cp, do not affect the acquisition.

During explicit acquisition, a receiver phase is
recalculated at the beginning of each startacq
statement. The getelem statement of the example
above might also be used in a real- time loop to
apply the phase table to subsequent blocks of a
compressed acquisiton, using nf.

The rcvrphase statement itself is executed in
real- time. Multiple rcvrphase statements can also be
used to change multiplier for different blocks of
acquisition. The value of stepsize is a PSG global
and so has a fixed value in each increment.

When multiple receivers are present, the receiver
phase calculation can also depend on the values of
the global variables rcvrp[i] and rcvrp1[i], if
they exist. The full equation for the receiver phase
is:

phase[i] = rcvrp[i] + oph*90 +
multiplier*(stepsize + rcvrp1[i])

in which i designates the individual receiver, 0 =
1 to n-1, in which n is the number of receivers. The
value rcvrp[i] is an overall zero- order phase offset
and rcvrp1[i] is a first order phase offset to
stepsize, and both can be set individually for each
receiver.

Arguments: multiplier is a real- time multiplier of stepsize to
determine the small- angle receiver phase. The value
must be a real- time variable (v1 to v42, oph, etc),
or a real- time constant (zero, one, etc). It cannot
be a real- time table (t1 to t60).

rcvrstepsize Set small-angle phase stepsize of receivers.

Syntax: rcvrstepsize(stepsize)
double stepsize; /* receiver-phase
stepsize, in degrees */

Related: rcvrphase Set small- angle phase of receiver
rcvrstepsize Set small- angle phase stepsize of

receiver
setreceiver Set quadrature receiver phase

from table
startacq Initialize explicit acquisition

332 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Description: Set the small- angle phase stepsize in degrees for
all receivers. The value stepsize is used along with
a real- time multiplier to set the phase of the
receiver at the beginning of each acquisition. The
multiplier is set by the rcvrphase statement.

The argument stepsize is a PSG global. For explicit
acquisition, a receiver phase is calculated at
run- time using the current value of stepsize and
fixed individually for each startacq statement.

The value of stepsize can be changed between
blocks of a compressed acquisition, using nf, to
provide a different value of stepsize for each
block. Because stepsize is global, the blocks of
acquisition must be programmed explicitily or
placed in a C for loop. Only multiplier, which is
a real- time variable, can be changed in a real- time
loop.

When multiple receivers are present, the receiver
phase calculation can also depend on the values of
the global variables rcvrp[i] and rcvrp1[i], if
they exist. The full equation for the receiver phase
is:

phase[i] = rcvrp[i] + oph*90 +
multiplier*(stepsize + rcvrp1[i])

in which i designates the individual receiver, 0 = 1
to n-1, in which n is the number of receivers. The
value rcvrp[i] is an overall zero- order phase offset
and rcvrp1[i] is a first order phase offset to
stepsize, and both can be set individually for each
receiver.

Arguments: stepsize sets a psg global variable at run- time, in
degrees.

readMRIUserByte Read MRI user byte on MRI User Panel

Syntax: readMRIUserByte(a,delay)
codeint a; /* a real-time variable to contain
the user byte */
double delay;

Description: Read the eight input lines from the 15- pin
D- connector, User In, on the MRI User Panel on the
back of the console, into the real- time variable a in
a duration delay. A minimum delay of 50 ms is
needed to complete the read. The read is performed

Related: rcvrphase Set small- angle phase of receiver
rcvrstepsize Set small- angle phase stepsize of

receiver
setreceiver Set quadrature receiver phase

from table
startacq Initialize explicit acquisition

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 333

synchronously with the experiment. The value of
delay can be used to assure that the user byte has
been read before the next statement.

Arguments: a is a real- time variable in which the byte is stored.

delay is a duration in seconds before the next
statement.

Examples: readMRIUserByte(v1,50e-3);

recoff Turn off receiver

Syntax: recoff()

Description: Gate all receivers off and put the respective T/R
switches in transmit mode.

This statement is identical to rcvroff, execept that
the transmitter must be unblanked explicitly.

recon Turn on receiver

Syntax: recon()

Description: Gate all receivers on and put the respective T/R
switches in receive mode.

This statement is identical to rcvron, except that
the transmitter must be blanked explicitly. The
recon statement also does not affect the blanking
state of rgpulse.

rgpulse Perform pulse on observe channel

Syntax: rgpulse(width,phase,RG1,RG2)
double width; /* duration of pulse, seconds
*/
codeint phase; /* real-time variable for
phase */
double RG1; /* duration of predelay in
sec */
double RG2; /* duration of postdelay in
sec */

Related: rcvroff Turn off receiver and unblank observe
amplifier

rcvron Turn on receiver and blank observe
amplifier

recon Turn on receiver

Related: rcvroff Turn off receiver and unblank observe
amplifier

rcvron Turn on receiver and blank observe
amplifier

recoff Turn off receiver

334 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Description: Set the quadrature phase and gates of the observe
channel on and off at the current power level with
amplifier unblanking and blanking. rgpulse is
preceded by a predelay RG1 and follwed by a
postdelay RG2. The associated amplifier is
unblanked if it is in pulse mode and the phase is
set, both at the beginning of the predelay. The
associated amplifier is blanked at the end of the
postdelay if it is in pulse mode.

Blanking at the end of the postdelay is suppressed
if a rcvroff statement has been executed
previously.

Arguments: width is the duration of the pulse, in seconds.

phase is a 90° multiplier for the first- decoupler
phase. The value must be a real- time variable (v1
to v42, oph, etc), a real- time constant (zero, one,
etc), or a real- time table (t1 to t60).

RG1 is the duration of the predelay, in seconds.

RG2 is the duration of the predelay, in
seconds.rcvroff

Examples: rgpulse(pw,v3,rof1,rof2);
rgpulse(pw,zero,1.0e-6,0.2e-6);

rgradient Set DAC level of any one gradient axis

Syntax: rgradient(axis,daclvl)
char axis; /* gradient 'x', 'X', 'y',

Related: decpulse Perform pulse with assigned
values on first decoupler

dec2rgpulse Perform pulse on second
decoupler

dec3rgpulse Perform pulse on third
decoupler

dec4rgpulse Perform pulse on fourth
decoupler

decshaped_pulse Perform shaped pulse on first
decoupler

obspulse Perform pulse with assigned
values on observe channel

pulse Perform pulse with assigned
values on observe channel

rcvroff Turn off receiver and unblank
observe amplifier

shaped_pulse Perform shaped pulse on
observe channel

simshaped_pulse Perform simultaneous shaped
pulses, observe and first
decoupler

simpulse Perform simultaneous pulses,
observe and first decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 335

'Y', 'z' or 'Z' */
double daclvl; /* gradient amplitude, DAC
units */

Description: Set the gradient amplifier to specified value in DAC
units. The gradalt parameter can be used to
multiply the amplitude on alternative scans.

Arguments: axis specifies the gradient channel. It can be one
of the characters 'X', 'x', 'Y', 'y', 'Z', or 'z'. For
imaging, axis can be 'gread', 'gphase', or 'gslice'.

daclvl specifies the gradient amplitude using a real
number from –4096.0 to 4095.0 for the Performa I
PFG module, and from –32768.0 to 32767.0 for the
Performa II PFG module and imaging. oph, etc.

Examples: rgradient('z',1327.0);

rlendloop End real-time loop with fixed count

Syntax: void rlendloop(index)

codeint index /* real-time variable index
*/

Description: End a loop that was started by an rlloop
statement.

Arguments: index is a real- time variable used as an index to
keep track of the number of times through the loop.
It must be the same variable used in rlloop and
its value should not be altered by any real- time
math statements.

Examples: rlendloop(v10);

Related: getorientation Read image- plane orientation
shapedgradient Generate shaped gradient
zgradpulse Create a gradient pulse on the

z channel

Related: endloop End real- time loop
kzendloop End real- time loop with fixed

duration
kzloop Start real- time loop with fixed

duration
loop Start real- time loop
parallelend End parallel section of pulse

sequence
parallelstart Start parallel section of pulse

sequence
rlloop Start real- time loop with fixed

count

336 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

rlloop Start real-time loop with fixed count

Syntax: int rlloop(count, vcount, index)

int count /*
duration of the loop, seconds */
codeint vcount /* number of times to
loop */
codeint index /*
real-time index to steps of loop */

int return /* number of times to loop */

Description: Start a loop to execute statements in real- time with
a fixed number of repetitions. The rlendloop
statement ends the loop begun by rlloop. This
statement should be used to replace loop in
parallel sections of a pulse sequence, created by
parallelstart-parallelend. Unlike loop the
total duration of rlloop is known at run time.

kzloop returns the number of repetitions as an
integer.

Arguments: count is an integer containing the number of times
through the loop.

vcount is a real- time variable containing the
number of times through the loop. Its value is
initialized from count. The value of vcount should
not be changed by any real- time math statements.

index is a real- time variable used as an index to
keep track of the number of times through the loop.
It must be the same variable as that used in
rlendloop and its value should not be altered by
any real- time math statements.

Examples: int count;

count = (int) getval(“loopcount”);

rlloop(count,v1,v10);

 delay(3.0);

 rgpulse(p1,v1,0.0,0.0);

rlendloop(v10);

Related: endloop End real- time loop
kzendloop End real- time loop with fixed

duration
kzloop Start real- time loop with fixed

duration
loop Start real- time loop
parallelend End parallel section of pulse

sequence
parallelstart Start parallel section of pulse

sequence

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 337

rlpower Set power level of any channel

Syntax: rlpower(power,device)
double power; /* power level value, dB */
int device; /* OBSch, DECch, DEC2ch,
DEC3ch or DEC4ch */

Description: Set the power level of any channel using the coarse
attenuator. The second integer argument device
selects the channel. The statement
rlpwrf(amplitude,OBSch)is identical to
obspwrf(amplitude).

The rlpower statement inserts a delay of 50 ns into
the pulse sequence and you should allow 3 µs for
the power to reach the new level during the next
delay. The coarse attenuator can introduce a
transient when it changes and it is a good practice
to execute obspower only when the transmitter is
blanked and gated off.

Arguments: power sets the coarse attenuator in 1 dB steps from
a maximum power of 63 to a minimum of –16.

device is one of the global integer constants OBSch
(observe channel), DECch (first decoupler), DEC2ch
(second decoupler), DEC3ch (third decoupler), or
DEC4ch (fourth decoupler).

Examples: rlpower(63,OBSch);

rlpwrf Set fine power level of any channel

Syntax: rlpwrf(amplitude)
double power; /* fine-power value */
int device; /* OBSch, DECch, DEC2ch,
DEC3ch or DEC4ch */

Description: Set the fine- power value of the any channel using
the linear modulator. The second integer argument
device selects the channel. The statement
rlpwrf(amplitude,OBSch)is identical to
obspwrf(amplitude).

Arguments: amplitude sets the fine power in units of 1 from a
maximum of 4095 to a minimum of 0. The fine
power and the coarse power can be used

rlendloop End real- time loop with fixed count

Related: dec2power Set power level of second decoupler
dec3power Set power level of third decoupler
dec4power Set power level of fourth decoupler
rlpower Set the power level of any channel

338 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

interchangeably when 6 dB units of coarse power
correspond to a ×2 change of the fine power.

device is one of the global integer constants OBSch
(observe channel), DECch (first decoupler), DEC2ch
(second decoupler), DEC3ch (third decoupler), or
DEC4ch (fourth decoupler).

Examples: rlpwrf(3500,OBSch);

rotate Set standard oblique gradient-coordinate rotation angles

Syntax: rotate()

Description: Apply the standard oblique Euler rotation angles,
defined by the global variables phi, theta, and psi
and their respective parameters, for rotation
between the logical axes (read, phase, and slice) and
the physical axes X, Y, and Z.

Examples: rotate();

rot_angle Set user-defined oblique gradient-coordinate rotation angles

Syntax: rot_angle(phi,theta,psi)
double phi,theta,psi; /* user defined
rotation angles*/

Description: Sets user- defined, oblique Euler rotation angles phi,
theta, and psi for the gradient rotation between
the logical axes (read, phase, and slice) and the
physical axes X, Y, and Z.

Arguments: phi, theta, and psi are the user defined oblique
Euler angles in degrees.

Examples: rot_angle(phi, theta, psi);

Related: decpwrf Set fine power level of first decoupler
dec2pwrf Set fine power level of second

decoupler
dec3pwrf Set fine power level of third decoupler
dec4pwrf Set fine power level of fourth

decoupler
rlpwrf Set fine power level of any channel

Related: create_rotation_list Create list of
gradient- coordinate
rotation angles

rot_angle Set user- defined oblique
gradient- coordinate
rotation angles

rot_angle_list Set gradient- coordinate
rotation angles from a list

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 339

rot_angle_list Set gradient-coordinate rotation angles from list

Syntax: rot_angle_list(listId,state,vindex)
int listId;/* ID of the list */
char mode;/* indexing mode */
codeint vindex;/* real-time v-variable */

Description: Set user- defined, oblique Euler rotation angles from
a previously defined list, created using the
create_rotation_list statement. The list is
referenced by an integer listId. The angles in the
list can be accessed in real- time loops with a
real- time index vindex or in a C- loop using an
integer index, depending on the value of state.

Arguments: listId is an integer that identifies the
rotation- angle list, created earlier using the
create_rotation_list statement.

state is a character indicating the indexing mode.
It can be set to 'c' for compressed mode, 's' for
standard mode, and 'i' for indexed mode. For index
mode, vindex should be an integer index of a C for
statement.

vindex is a real- time variable for compressed and
standard modes. For index mode, vindex should be
an integer index of a C for statement. The value
should range from 1 to the number of rotation angle
sets in the specified list.

rotorperiod Obtain period of external tachometer signal

Syntax: rotorperiod(period)
codeint period; /* real-time variable for one
tachometer period */

Related: create_rotation_list Create list of
gradient- coordinate
rotation angles

rotate Set standard oblique
gradient- coordinate
rotation angles

rot_angle_list Set gradient- coordinate
rotation angles from list

Related: create_rotation_list Create list of
gradient- coordinate
rotation angles

rotate Set standard oblique
gradient- coordinate
rotation angles

rot_angle Set user- defined oblique
gradient- coordinate
rotation angles

340 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Description: Assign the current tachometer period from the
master controller to a real- time variable designating
period in units of 100 ns. Execution of this
statement requires the connection of a square- wave
signal source as described for the statement
rotorsync.

Arguments: period should be a real- time variable (v1 to v42)
whose value will be assigned as an integer
corresponding to the tachometer period in units of
100 ns. For example, if one tachometer period is
170 s, the statement rotorperiod(v4) will assign
a value of 1700 to v4. The corresponding
tachometer frequency (rotor speed) would be
1E + 7 / 1700 = 5882 Hz.

Examples: rotorperiod(v4);

rotorsync Execute time delay based on external tachometer signal

Syntax: rotorsync(periods)
codeint periods; /* number of tachometer
periods to wait */

Description: Halt all channels and resume execution after a
duration of periods tachometer signal cycles. The
tachometer is a square- wave signal that is usually
generated from a MAS Speed Controller or from a
Pneumatics and Tachometer Box. These devices that
supply the signal should be connected to the
Tachometer input of the Pneumatics Router and
tee'd off to the external trigger port of the
Acquistion Computer.

The rotorsync statement operates by continuous
measurement of the tachometer period in the
master controller and by separately acknowledging
the rise- time of the square wave at the external
trigger. The rotorsync statement measures the
duration to the first rise- time event. It then counts
subsequent events until periods-1 events have
passed and finally supplies the remainder of one
tachometer period to complete periods full cycles.

Arguments: periods is a real- time variable that specifies the
number of tachometer cycles to pass before
restarting the pulse sequence.

Examples: rotorsync(v6);

Related: rotorsync Execute time delay based on external
tachometer signal

xgate Gate pulse sequence from external
tachometer signal

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 341

Related: rotorperiod Obtain period of external
tachometer signal

xgate Gate pulse sequence from external
tachometer signal

342 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

S

sample Acquire data explicitly during time delay

Syntax: sample(time)
double time /* time duration of sample
in sec */

Description: Acquire data points using the VNMRS digital
receiver with a 12.5 ns dwell time (80 MHz rate) for
a duration of time, in seconds. The data points are
automatically downsampled with calculation of
digital filters to produce a set of complex points
with a dwell time of 1.0/sw.

For acquisition of one FID with a single sample
statement, set time = at. The resulting FID will
consist of np/2.0 complex points with a dwell time
of 1.0/sw, where at = np/(2.0*sw). The latter
equality is usually set automatically by VnmrJ when
any of the three parameters at, np, and sw are set,
but this situation is not certain. If time is not equal

sample Acquire data explcitily during time delay
setacqmode Set windowed acquisition for explicit sampling
set_angle_list Select angle from 1D real-time list
setMRIUserGates Set all three gates of MRI User panel
setreceiver Set quadrature receiver phase from table
setstatus Set decoupler status of any channel
settable Assign integer array to table
shapedpulse Perform shaped pulse on observe channel
shaped_pulse Perform shaped pulse on observe channel
shapedgradient Perform shaped gradient pulse on any one axis
shapelist Create pulse-shape list from base pattern and offset array
shapedpulselist Perform shaped pulses from shape list on observe channel
shapedpulseoffset Perform shaped pulse on observe channel with offset
shapelistpw Return exact pulse width of shaped-pulse pattern
simpulse Simultaneous pulses, observe and first decoupler
sim3pulse Simultaneous pulses, observe, first and second decouplers
sim4pulse Simultaneous pulses, observe, first, second and third

decouplers
simshaped_pulse Simultaneous shaped pulses, observe and first decoupler
sim3shaped_pulse Simultaneous shaped pulses, observe, first and second

decouplers
sim4shaped_pulse Simultaneous shaped pulses, observe, first, second and third

decouplers
sp#off Turn off spare line (#=1,2, or 3)
sp#on Turn on spare line (#=1,2, or 3)
spinlock Perform waveform spinlock on observe channel
starthardloop Start hardware loop
startacq Initialize explicit acquisition
startacq_obs Initialize explicit acquisition in parallel section
startacq_rcvr Initialize explicit acquisition in parallel section
status Set status of decoupler and homospoil
statusdelay Execute status statement within time delay
stepsize Set small-angle phase stepsize of any channel
sub Subtract real-time integer values
swift-acquire Execute SWIFT RF pulses and gated acquire pulse train

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 343

to np/(2.0*sw), the number of points produced will
be erroroneous. Use sample(np/(2.0*sw))to avoid
np errors.

The statements acquire(np,1.0/sw) and
sample(np/(2.0*sw) have exactly the same
function on VNMRS. The sample statement is not
back- comapatible with Unity- series spectrometers.
For VNMRS, the parameters at, np, and sw
designate the number of downsampled points and
the nominal dwell time to be calculated from the 80
MHz data stream of the digital receiver and they
have no direct effect on the timing of the sequence.

The actual sampling period is determined by the
arrangement and timing of all the sample
statements in the pulse sequence. You should take
care to program the sequence so that the designated
sampling period in the sequence does not exceed
at. If you do not do so, unprediciable behavior
and/or a program crash can result.

If a single sample or acquire statement is used
expliticly in a pulse sequence, the statements
startacq and endacq will be inserted at run time,
before and after. It is good practice to also explicitly
include these statements. If a pulse sequence does
not explicitly contain sample or acquire,
acquire(np, 1.0/sw) will be inserted at run- time,
bracketed by startacq and endacq. This
construction is used commonly and is called implict
acquisition. In this case, no statements may be
executed after acquisition. Decouplers set by status
will be turned off automatically after an implicit
acquisition.

If one or more sample or acquire statements are
present, the construction is called explicit
acquisition. In this case, you can control the timing
of acquisition in the sequence relative to other
statements and insert multiple sample statements.

You may insert multiple statements
sample(np/(2.0*sw)(bracketed by startacq and
endacq)to collect multiple FIDS in a single scan,
each with np points. This construction is called
compressed acquisition. When compressed
acquisition is used, you must create the parameter
nf with a value equal to the number of FIDs.
Compressed acquisition is used commonly in
imaging experimements to obtain phase- encoded
two- dimensional data in a single scan. In this case,
the sample statements should be preceded by a
real- time loop or the switchable loops msloop
and/or peloop and be followed by an endloop
statement.

A compressed acquisition does not require the use
of a real- time or switchable loop. Instances of

344 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

sample may be arranged in the sequence or placed
in a C for loop to be arranged at run- time.

You may insert multiple sample statements to
collect a single FID with np points, for which the
time between sample statements may contain pulses
or decoupling waveforms. This construction is
known as windowed acquisition. For windowed
acquisition the sample statements are usually
inserted between loop and endloop. A startacq
statement must precede the loop statement and an
endacq statements must follow the endloop
statement. These statements should not be present
in the loop. The parameter nf is not needed for
windowed acquisition, or it can be set to 1.0.

A windowed acqusition may be performed in
constant sampling mode. In this mode, sampling of
data begins with the first instance of sample and
proceeds continuously until the end of the last
sample statement. The digital receiver outputs data
points with a value of zero during the time between
sample statements. All points are downsampled
without regard to whether they contain data or
zeros. Constant sampling mode is the default for
windowed acquisition loops bracketed by startacq
and endacq. It is used primarily for mutlipulse
experiments for solid- state NMR.

A windowed experiment may be performed in
explicit sampling mode. In this mode, sampling of
data occurs only during the sample statements and
all the blocks of sampling are joined before
downsampling. You can designate explicit sampling
by including the statement setacqmode(WACQ|NZ) in
the sequence before the startacq that begins the
first acquisition. Also, you may designate explicit
sampling by failing to include the startacq and
endacq statements around the acquisition loop.
Explicit sampling is also the default for compressed
acquisition, where startacq and endacq statements
are inside the acquisition loop.

For all pulse sequences with windowed acquisition,
you must be sure that the parameter at and the
related parameters, np and sw, designate a time that
is greater than or equal to the sampling time of the
sequence. If at is less than the sampling time, an
error will result, possibly with a crash of the pulse
sequence. If at is greater than the sampling time,
the data will continue sampling zeros so that np =
at/(2.0*sw).

For any single acquisition of np downsampled
points, for either a single or compressed
acquisition, by default, the digital receiver will
sample for a required period after the last point for
a period of about 1.0/sw. This period is present to
sample enough data to accurately construct the last
point. The actual sampling period in the sequence

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 345

will always exceed the acquisition time at. The
duration of the actual sampling period will be
placed in the parameter acqtm, if it exists. To force
acqtm = at, create acqtm in the parameter set and
set acqtm = 'n'. In this case, the extra sampling will
be suppressed, though the last point will be
inaccurate. For many experiments, the last point is
noise, and you can set acqtm = 'n'. If truncated
data is expected, you should not set acqtm='n'.

An overhead period of about 100 to 200 µs is
initiated by the endacq statement at the end of any
acqusition of np downsampled points. This period
is placed in the delay following the endacq
statement. An error will result if the suceeding
delay does not accomodate this period. For most
sequences, the delay following endacq is the recycle
delay d1 and the overhead period sets the minimum
value of d1. For other sequences and for sequences
using compressed acquisition, you must be sure a
delay is present to accommodate the overhead
period.

Arguments: time is the duration, in seconds, of the sampling
interval. For VNMRS, the two numbers have no
individual meaning. For compatibility with the
Unity series spectrometers, number_points/2.0 is
the nominal number of complex points to be
sampled and sampling_interval is the nominal
time between complex points.

setacqmode Set acquisition for explicit sampling

Syntax: setacqmode(WACQ|NZ)

Description: Set a windowed acquisition to sample data only
during the sample statement and to exclude
sampling during periods between sample
statements. Blocks of data are concatenated before
downsampling. This acquisition mode is called
explicit sampling. The statement
setacqmode(WACQ|NZ)should be present in the
pulse sequence somewhere before the startacq
statement that begins acquisition. Alternatively, you

Related: endacq End explicit acquisition
rcvroff Turn off receiver and unblank

observe amplifier
rcvron Turn on receiver and blank observe

amplifier
sample Acquire data explicitly during time

delay
setacqmode Set acqusition for explicit sampling
startacq Initialize explicit acquisition

346 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

may designate explicit sampling by failing to include
the startacq and endacq statements around the
acquisition loop. In this case, setacqmode(WACQ|NZ)
is not needed. Explicit sampling is also the default
for compressed acquisition, where startacq and
endacq statements are inside the acquisition loop.

The alternative to explicit sampling is constant
sampling. In this mode, sampling of data begins
with the first instance of sample and proceeds
continuously until the end of the last sample
statement. The digital receiver outputs data points
with a value of zero during the time between sample
statements. All points are downsampled without
regard to whether they contain data or zeros.
Constant sampling mode is the default for
windowed acquisition loops bracketed by startacq
and endacq. It is used primarily for mutlipulse
experiments for solid- state NMR.

Arguments: The values of the arguments must be entered
precisely as WACQ|NZ. There are no other public uses
of the setacqmode statement.

Examples: setacqmode(WACQ|NZ);

set_angle_list Set angle from 1D real-time list

Syntax: set_angle_list(listId,angle_name,state,vindex)
int listId; /* ID of the list */
char *angle_name; /* angle to be set, psi,
theta or phi */
char state; /* indexing mode */
codeint vindex; /* real-time v-variable */

Description: Set one of three user- defined, oblique Euler
rotation angles from a previously defined list,
created using the create_angle_list statement.
The list is referenced by an integer listId. The
angles in the list must be accessed in real- time
loops with the real- time index vindex and state
must be set to 'c'.

listId is an integer that identifies the
rotation- angle list, created earlier using the
create_angle_list statement.

Related: endacq End explicit acquisition
rcvroff Turn on receiver and blank observe

amplifier
rcvron Turn off receiver and unblank

observe amplifier
sample Acquire data explicitly during time

delay
setacqmode Set acqusition for explicit sampling
startacq Initialize explicit acquisition

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 347

angle_name is a string specifying the angle as one
of "psi", "theta" or "phi".

state is a character indicating the indexing mode.
It must be set to 'c' for compressed mode. Standard
's' and indexed mode 'i' are not implemented.

vindex is a real- time variable used for compressed
mode.

Examples: set_angle_list(Id1, "psi", 'c',v2));
set_angle_list(Id1, "theta", 'c',v2));
set_angle_list(Id1, "phi", 'c',v2));

setMRIUserGates Set all three gates of MRI User Panel

Syntax: setMRIUserGates(int a)

Description: Set the state of the three BNCs (GATE1, GATE2 and
GATE3) on the MRI User Panel on the back of the
console from the binay representation of the
real- time variable a.

Arguments: The argument is the real- time variable with value 0
to 7 that contains the binary states of the gates.

Examples: setMRIUserGates(v3);

setreceiver Set quadrature receiver phase from table

Syntax: setreceiver(table)
codeint table; /* real-time table */

Description: Assign the ctth element of a table to the receiver
variable oph. Multiple setreceiver statements may be
used or the value of oph can be changed by

Related: exe_grad_rotation Set oblique
gradient- coordinate
rotation angles in
real- time

create_angle_list Create 1D real- time list
of angles

create_rotation_list Create list of oblique
gradient- coordinate
rotation angles

rot_angle Set user- defined oblique
gradient- coordinate
rotation angles

rot_angle_list Set oblique
gradient- coordinate
rotation angles from a
list

rotate Set standard oblique
gradient- coordinate
rotation angles

set_angle_list Select angle from a 1D
real- time list

348 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

real- time math statements; but this practice is not
recommended. The last value of oph prior to the
acquisition of data determines the value of the
receiver phase.

Arguments: table specifies the name of the table (t1 to t60).
Examples: setreceiver(t18);

setstatus Set decoupler status of any channel

Syntax: setstatus(channel,on,mode,sync,mod_freq)
int channel; /* OBSch, DECch, DEC2ch,
DEC3ch, DEC4ch */
int on; /* TRUE (=on) or FALSE (=off) */
char mode; /* 'c', 'w', 'g', etc */
int sync; /* TRUE (=synchronous) or
FALSE (=asynchronous) */
double mod_freq; /* modulation frequency */

Description: Set the decoupling status of any channel in the
pulse sequence and override the status parameters
such a dm and dmm. Unlike status(A), the
setstatus statement is never executed with the su
command.

If sync = FALSE, the pattern is executed, thereby
starting scan- to- scan at a pseudo- random position
in the pattern in order to average decoupling
sidebands. If sync = TRUE, the pattern is always
executed starting at the beginning.

Arguments: channel has the values OBSch, DECch, DEC2ch,
DEC3ch or DEC4ch to set the channel for
decoupling.

on is TRUE (turn on decoupler) or FALSE (turn off
decoupler).

mode is one of the following values for a decoupler
mode (for further information on decoupler modes,
refer to the description of the dmm parameter in the
manual Command and Parameter Reference:

'c' sets continuous wave (CW) modulation.

'f' sets fm- fm modulation (swept- square wave).

'g' sets GARP modulation.

'm' sets MLEV- 16 modulation.

'p' sets programmable waveform modulation.

Related: getelem Assign real- time integer using table
element

loadtable Assign table elements from a table
text file

setreceiver Set quadrature receiver phase cycle
from table

settable Assign integer array to table

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 349

'r' sets square wave modulation.

'u' sets square wave modulation.

'w' sets WALTZ- 16 modulation.

'x' sets XY32 modulation.

sync is TRUE (decoupler is synchronous) or FALSE
(decoupler is asynchronous).

mod_freq is the modulation frequency.
Examples: setstatus(DECch,TRUE,'w',FALSE,dmf);

setstatus(DEC2ch,FALSE,'c',FALSE,dmf2);

settable Assign integer array to table

Syntax: settable(tablename,numelements,intarray)
codeint tablename; /* real-time table
variable */
int numelements; /* number in array */
int *intarray; /* pointer to array of
elements */

Description: Store an integer array in a real- time table.

Arguments: table is the name of the table (t1 to t60).

number_elements is the size of the table.

intarray is a C array that contains the table
elements. Before calling settable, the integer array
must be predefined and predimensioned in the
pulse sequence using C statements.

Examples: settable(t1,8,int_array);

shapelist Create pulse-shape list from base pattern and offset array

Syntax: listId=shapelist(pattern,width,offsetarray,ns,state)

char *pattern; /* name of the base shape */
double width; /* duration of pulse, seconds */
doubleoffsetarray[]; /* double array
containing offsets */

Related: hsdelay Execute time delay with optional
homospoil pulse

status Set status of decoupler and
homospoil

statusdelay Execute status statement witn time
delay

Related: getelem Assign real- time integer using
table element

loadtable Assign table elements from table
text file

setreceiver Set quadrature receiver phase
cycle from table

350 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

doublens; /* number of shapes */
char state; /* compression 'c','s'or 'i' */
return listId: /* integer with the
list ID */

Description: Generate an internal list of RF shape patterns from
a base shape and an array of offsets. The shapes
are phase modulated to shift the frequency of
pulses. The shapes are stored directly in the RF
controller and are not written into user's shapelib
directory.

Frequency offsets are input from offsetarray, a C
double array. This array is typically calculated
using the offsetlist command, but can also be
computed directly by the user. The shapelist
statement returns an integer value listId to
identify the list. The mode of usage for the resulting
shape patterns is determined by state, which can
be 'c' for compressed, 's' for standard, or 'i' for
indexed mode. The usage of shapelist inside C code
for loops should be avoided, as all the shape
calculations are done in a single call for mode = 'c'
or 'i'.

Arguments: pattern is the root name of a .RF file in shapelib
containing the base shape.

width is the duration of the pulse, in seconds.

offsetarray is a C array containing the offset
frequencies in Hz.

ns is the the number of offset shapes in the list.

state is a character, where 'c' is compressed mode,
's' is standard mode and 'i' is indexed mode.

The return is listid, an integer index that
identifies the list of shapes.

Related: getarray Obtain all values from
arrayed parameter

offsetglist Create offset array from
position and
gradient- amplitude array

offsetlist Create offset array from
position and gradient
amplitude

poffset Return frequency offset
based on position

poffset_list Create offset array from
position array

position_offset Return frequency offset
based on position

position_offset_list Create offset array from
position array

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 351

shapedpulselist Perform shaped pulses from shape list on observe channel

Syntax: shapepulselist(listid, width, phase, RG1,
RG2, state, index)
int listid; ; /* integer with the list ID
*/
double width; /* duration of the pulse,
seconds */
int phase; /* real-time
quadrature-phase multiplier */
double RG1; /* duration of predelay,
seconds */
double RG2; /* duration of postdelay,
seconds */
char state; /* compression mode
'c','s'or 'i'*/
int index; /* index of individual shape
*/

Description: Apply a shaped pulse with a width in seconds,
phase, predelay RG1, and postdelay RG2 on the
observe channel that is obtained from a
pre- computed list of shapes. The pre- computed list
contains shapes created by the shapelist
statement, which phase- modulates a base shape to
produce a group of frequency offset shaped pulses.
The shapelist command returns an integer listid,
which is used as an argument of shapedpulselist.
The list of shapes is indexed using the state and
index arguments. The state argument specifies
compressed, standard, or indexed modes. It's value
must be the same as that used in the related
shapelist and peloop or msloop statements. For
imaging sequences, the value of state is supplied
by the variable seqcon[n]. If the state is
compressed, index should be a real- time variable.

Arguments: listid is an integer identifying the list of shapes.

width is the duration of the pulse, in seconds.

phase is a real- time multiplier to set the quadrature
phase.

RG1 is the duration of the predelay, in seconds.

RG2 is the duration of the postdelay, in seconds.

shapelist Create pulse- shape list
from base pattern and
offset array

shapedpulselist Perform shaped pulses
from shape list on
observe channel

shapedpulseoffset Perform shaped pulse on
observe channel with
offset

352 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

state is a character, where 'c' is compressed mode,
's' is standard mode and 'i' is indexed mode.

index is an index identifying an individual shape.
For compressed mode, index should be a real- time
variable. For standard mode, index is a C integer
set to 1. For indexed mode, index is a C integer
identifying the individual shape.

shapedpulseoffset Perform shaped pulse on observe channel with offset

Syntax: shapedpulseoffset(pattern, width, phase, RG1,
RG2, offset)
char *pattern; /* name of the base shape */
double width; /* duration of pulse, seconds
*/
int phase; /* real-time quadrature-phase
multiplier */
double RG1; /* duration of predelay,
seconds */
double RG2; /* duration of postdelay,
seconds */
double offset; /* frequency offset in Hz */

Description: Applies a shaped pulse on the observe channel with
the root name pattern and a frequency offset
offset, with a width in seconds, phase, predelay
RG1 and postdelay RG2. The offset is created by

Related: getarray Obtain all values from
arrayed parameter

offsetglist Create offset array from
position and
gradient- amplitude array

offsetlist Create offset array from
position and gradient
amplitude

poffset Return frequency offset
based on position

poffset_list Create offset array from
position array

position_offset Return frequency offset
based on position

position_offset_list Create offset array from
position array

shapelist Create pulse- shape list
from base pattern and
offset array

shapedpulselist Perform shaped pulses
from shape list on
observe channel

shapedpulseoffset Perform shaped pulse on
observe channel with
offsey

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 353

phase modulation, which is applied automatically in
the RF controller.

Arguments: pattern is the root name of a .RF file in shapelib
containing the base shape.

width is the duration of the pulse, in seconds.

phase is a real- time multiplier to set the quadrature
phase.

RG1 is the duration of the predelay, in seconds.

RG2 is the duration of the postdelay, in seconds.

offset is the frequency offset relative to the
synthesizer frequency, in Hz.

shapelistpw Return exact pulse width of shaped-pulse pattern

Syntax: value=shapelistpw(pattern,width)
char *shapename;
double width; /* nominal duration of the
pulse, seconds */
return value: /* exact duration of pulse,
seconds */

Description: Return the exact pulse width of a shaped pulse with
the name pattern and a desired width.

Arguments: pattern is the root name of a .RF file in shapelib
containing the shape name.

Related: getarray Obtain all values from
arrayed parameter

offsetglist Create offset array from
position and
gradient- amplitude array

offsetlist Create offset array from
position and gradient
amplitude

poffset Return frequency offset
based on position

poffset_list Create offset array from
position array

position_offset Return frequency offset
based on position

position_offset_list Create offset array from
position array

shapelist Create pulse- shape list
from base pattern and
offset array

shapedpulselist Perform shaped pulses
from shape list on
observe channel

shapedpulseoffset Perform shaped pulse on
observe channel with
offset

354 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

width is the requested duration of the shaped
pulse, in seconds.

The return value is the exact duration of the pulse,
in seconds.

shaped_pulse Perform shaped pulse on observe channel

Syntax: shaped_pulse(pattern,width,phase,RG1,RG2)
char *pattern; /* name of .RF text file
*/
double width; /* duration of pulse,
seconds */
codeint phase; /* real-time variable
for phase */
double RG1; /* duration of predelay,
seconds */
double RG2; /* duration of postdelay,
seconds */

Description: Set the quadrature phase, gate the observe channel
on and off at the current power level with amplifier
blanking and unblinking, and apply a shaped- pulse
pattern. shaped_pulse is preceded by a predelay
and follwed by a postdelay. The associated amplifier
is unblanked if it is in pulse mode and the phase
is set, both at the beginning of the predelay. The
associated amplifier is blanked at the end of the
postdelay if it is in pulsed mode.

Related: init_rfpattern Obtain all values from
arrayed parameter

Shaped_pulse Create offset array from
position and
gradient- amplitude array

offsetlist Create offset array from
position and gradient
amplitude

poffset Return frequency offset
based on position

poffset_list Create offset array from
position array

position_offset Return frequency offset
based on position

position_offset_list Create offset array from
position array

shapelist Create pulse- shape list
from base pattern and
offset array

shapedpulselist Perform shaped pulses
from shape list on observe
channel

shapedpulseoffset Perform shaped pulse on
observe channel with
offset

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 355

Arguments: pattern is the root name of a text file with a .RF
extension in shapelib, containing the shape name.

width is the duration of the pulse, in seconds.

phase is a 90° phase multiplier of the observe
channel. The value must be a real- time variable (v1
to v42, oph, etc), a real- time constant (zero, one,
etc) or a real- time table (t1 to t60).

RG1 is the duration of the predelay, in seconds.

RG2 is the duration of the postdelay, in seconds.
Examples: shaped_pulse("gauss",pw,v1,rof1,rof2);

shapedgradient Perform shaped gradient pulse on any one axis

Syntax: shapedgradient(pattern,width,daclvl,axis,loops,wait)

char *pattern; /* name of .GRD file */
double width; /* duration of the gradient
shape, seconds */
double daclvl; /* gradient amplitude of
pulse, in DAC units */
char axis; /* gradient channel 'x',
'y', or 'z' */
int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */

Description: Apply a shaped gradient pulse of duration width
and gradient amplitude daclvl to the selected
gradient channel axis, using a shape, determined
by the argument pattern in shapelib. The shape is
repeated loops times. If the value of wait is
NOWAIT, the next pulse sequence statement is
executed immediately after the beginning of the
shape to allow for execution of shaped pulses while
the gradient is on. If the value of wait is WAIT, the
next statement executes at the concludion of the
gradient pulse.

Arguments: pattern is the root name of a .GRD file in shapelib
containing the gradient shape name.

width is the requested duration of the gradient
shape, in seconds. The minimum duration is the

Related: decshaped_pulse Perform shaped pulse on
first decoupler

dec2shaped_pulse Perform shaped pulse on
second decoupler

dec3shaped_pulse Perform shaped pulse on
third decoupler

dec4shaped_pulse Perform shaped pulse on
fourth decoupler

rgpulse Perform pulse on observe
channel

356 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

number of elements times 10 µs. The duration of
every element must be a multiple of 50 ns. The
shaped gradient software rounds each element to a
multiple of 50 ns. If the requested width is
disallowed or differs from the actual width by more
than 2%, a warning message is displayed.

daclvl sets amplitude of the gradient pulse in
whole- number DAC units from –32767 to 32767. A
value of 0 produces no gradient.

axis selects the desired gradient channel. It can be
'x', 'X','y','Y', or 'z','Z'.

loops is a value from 0 to 255 that repeats the
gradient shape.

wait is a keword, either WAIT or NOWAIT, that
determines the time to the next statement. For a
value of WAIT the time is width*loops. For a value
of NOWAIT the time is 0.

Examples: shapedgradient("hsine",0.02,32767,'y',1,NOWAIT);

simpulse Perform simultaneous pulses, observe and first decoupler

Syntax: simpulse(obswidth,decwidth,obsphase,decphase,RG1,RG2
)
double obswidth,decwidth; /* pulse durations,
seconds */
int obsphase,decphase; /* real-time
quadrature-phase multipliers */
double RG1; /* duration of
predelay, seconds */
double RG2; /* duration of
postdelay, seconds */

Description: Set the quadrature phase, the gates and blanking of
the observe channel and first decoupler to produce
simultaneous pulses on these two channels with a
predelay and postdelay. The shorter of the two
pulses is centered on the longer pulse. The
amplifiers of both channels are unblanked and the
quadrature phase is set at the beginning of the
predelay. The amplifiers of both channels are
blanked at the end of the postdelay if they are in
pulsed mode.

If they are not identical, the absolute difference in
the two pulse widths must be greater than or equal
to 0.1 µs to avoid delays less than the minimum of

Related: rgradient Set DAC level of any one
gradient axis

shapedgradient Perform shaped gradient
pulse on any one axis

zgradpulse Perform gradient pulse on z
axis

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 357

0.05 µs. The longer pulse width will be truncated to
that of the shorter pulse width. If one of the pulse
widths is 0.0, simpulse will execute no events and
it will not interrupt waveform decoupling that may
be in progress on that channel. The simpulse
statement will not be executed if both pulse widths
are zero.

Arguments: obswidth and decwidth are the duration, in
seconds, of the pulses on the observe channel and
first decoupler, respectively.

obsphase and decphase are 90° phase multipliers
of the observe channel and the first decoupler,
respectively. The value must be a real- time variable
(v1 to v42, oph etc), a real- time constant (zero, one,
etc), or a real- time table (t1 to t60).

RG1 is the duration of the predelay in seconds.

RG2 is the duration of the postdelay in seconds.
Examples: simpulse(pw,pp,v1,v2,0.0,rof2);

sim3pulse Perform simultaneous pulses, observe, first and second
decouplers

Syntax: sim3pulse(obswidth,decwidth,dec2width,obsphase,decph
ase,dec2phase,RG1,RG2)
double obswidth,decwidth,dec2width;
/* pulse durations, seconds */
int obsphase,decphase,dec2phase;
/* real-time quadrature-phase multipliers */
double RG1; /* duration of
predelay, seconds */
double RG2; /* duration of
postdelay, seconds */

Description: Set the quadrature phase, the gates and blanking of
the observe channel, the first and the second
decouplers to produce simultaneous pulses on these
three channels with a predelay and postdelay. The
pulses are all centered on the same time- point. The
amplifiers of all channels are unblanked and the
quadrature phase is set at the beginning of the
predelay. The amplifiers of all channels are blanked
at the end of the postdelay if they are in pulsed
mode.

Related: decrgpulse Perform pulse on first decoupler
rgpulse Perform pulse on observe channel
sim3pulse Perform simultaneous pulses,

observe, first, and second
decouplers

sim4pulse Perform simultaneous pulses,
observe, first, second, and third
decouplers

358 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

If they are not identical, the absolute difference in
any two pulse widths must be greater than or equal
to 0.1 µs to avoid delays less than the minimum of
0.05 µs. The longer pulse width will be truncated to
that of the shorter pulse width. If any of the pulse
widths is 0.0, sim3pulse will execute no events and
it will not interrupt waveform decoupling that may
be in progress on that channel. The sim3pulse
statement will not be executed if all pulse widths
are zero.

Arguments: obswidth ,decwidth, and dec2width are the
durations, in seconds, of the pulses on the observe
channel, first and second decouplers, respectively.

obsphase, decphase, and dec2phase are 90° phase
multipliers of the observe channel, the first and
second decouplers, respectively. The values must be
a real- time variable (v1 to v42, oph, etc), a
real- time constant (zero, one, etc) or a real- time
table (t1 to t60).

RG1 is the duration of the predelay in seconds.
Examples: sim3pulse(pw,p1,p2,oph,v10,v1,rof1,rof2);

sim3pulse(pw,0.0,p2,oph,zero,v1,rof1,rof2);

sim4pulse Perform simultaneous pulses, observe, first, second and third
decouplers

Syntax: sim4pulse(obswidth,decwidth,dec2width,dec3width,obsp
hase,decphase,dec2phase,dec3phase,RG1,RG2)
double obswidth,decwidth,dec2width,dec3width;
/* pulse durations, seconds */
int obsphase,decphase,dec2phase,dec3phase;
/* real-time quadrature-phase multipliers */
double RG1; /* duration of
predelay, seconds */
double RG2; /* duration of
postdelay, seconds */

Description: Set the quadrature phase, the gates and blanking of
the observe channel, the first, second and third
decouplers to produce simultaneous pulses on these
four channels, with a predelay and postdelay. The
pulses are all centered on the same time- point. The
amplifiers of all channels are unblanked and the
quadrature phase is set at the beginning of the
predelay. The amplifiers of all channels are blanked

Related: decrgpulse Perform pulse on first decoupler
rgpulse Perform pulse on observe channel
simpulse Perform simultaneous pulses,

observe and first decoupler
sim4pulse Perform simultaneous pulses,

observe, first, second, and third
decouplers

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 359

at the end of the postdelay if they are in pulsed
mode.

If they are not identical, the absolute difference in
any two pulse widths must be greater than or equal
to 0.1 µs to avoid delays less than the minimum of
0.05 µs. The longer pulse width will be truncated to
that of the shorter pulse width. If any of the pulse
widths is 0.0, sim4pulse will execute no events and
it will not interrupt waveform decoupling that may
be in progress on that channel. The sim4pulse
statement will not be executed if all pulse widths
are zero.

Arguments: obswidth, decwidth, dec2width, and dec3width are
the durations, in seconds, of the pulses on the
observe channel, first, second, and third decouplers,
respectively.

obsphase, decphase, dec2phase, and dec3phase are
90° phase multipliers of the observe channel, the
first, second, and third decouplers, respectively. The
values must be a real- time variable (v1 to v42, oph,
etc), a real- time constant (zero, one, etc) or a
real- time table (t1 to t60).

RG1 is the duration of the predelay in seconds.

RG2 is the duration of the postdelay in seconds.
Examples: sim4pulse(pw,p1,p2,p3,oph,v10,v1,v2,rof1,rof2);

sim4pulse(pw,0.0,p2,p3,oph,zero,v1,v2,rof1,r
of2);

simshaped_pulse Perform simultaneous shaped pulses, observe and first
decoupler

Syntax: simshaped_pulse(obspattern,decpattern,obswidth,decwi
dth,obsphase,decphase,RG1,RG2)
char *obspattern,*decpattern;
/* names of .RF text files */
double obswidth, decwidth;
/* pulse durations, seconds */
codeint phase; /* real-time
quadrature phase multiplier */
double RG1; /* duration of
predelay, seconds */
double RG2; /* duration of
postdelay, seconds */

Related: decrgpulse Perform pulse on first decoupler
rgpulse Perform pulse on observe channel
simpulse Perform simultaneous pulses,

observe and first decoupler
sim3pulse Perform simultaneous pulses,

observe, first, and second decouplers

360 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Description: Set the quadrature phase, gate the observe channel
and first decoupler on and off at the current power
level with amplifier blanking and unblanking ,and
apply shaped- pulse patterns to both channels.
shaped_pulse is preceded by a predelay and
followed by a postdelay. The associated amplifier is
unblanked if it is in pulse mode and the phase is
set, both at the beginning of the predelay. The
associated amplifier is blanked at the end of the
postdelay if it is in pulsed mode.

If they are not identical, the absolute difference in
the two pulse widths must be greater than or equal
to 0.1 µs to avoid delays less than the minimum of
0.05 µs. The longer pulse width will be truncated to
that of the shorter pulse width. If any of the pulse
widths are 0.0, simshaped_pulse will execute no
events and it will not interrupt waveform
decoupling that may be in progress on that channel.
The simshaped_pulse statement will not be
executed if all pulse widths are zero.

If a pattern is set to '', simshaped_pulse will
execute a square pulse on that channel.

Arguments: obspattern and decpattern are the root names of
text files with a .RF extension in shapelib,
containing the shape names for the observe channel
and first decoupler, respectively.

Arguments: obswidth and decwidth are the durations of the
pulses, in seconds, for the observe channel and first
decoupler, respectively.

obsphase and decphase are a 90° phase multipliers
of the observe and first decoupler channels,
respectively. The value must be a real- time variable
(v1 to v42, oph, etc), a real- time constant (zero,
one, etc) or a real- time table (t1 to t60).

RG1 is the duration of the predelay, in seconds.

RG2 is the duration of the postdelay, in seconds.
Examples: simshaped_pulse("gauss","hrm180",pw,p1,v2,v5,rof1,

rof2);

Related: decrgpulse Perform pulse on first
decoupler

decshaped_pulse Perform shaped pulse on
first decoupler

rgpulse Perform pulse on observe
channel

shaped_pulse Perform shaped pulse on
observe channel

sim3shaped_pulse Perform simultaneous
shaped pulses, observe, first,
and second decouplers

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 361

sim3shaped_pulse Perform simulataneous shaped pulses observe, first and second decouplers

Syntax: sim4shaped_pulse(obspattern,decpattern,dec2pattern,o
bswidth,decwidth,dec2width,obsphase,decphase
,dec2phase,RG1,RG2)
char *obspattern,*decpattern,*dec2pattern;
/* names of .RF text files */
double obswidth,decwidth,dec2width;
/* pulse durations, seconds */
int obsphase,decphase,dec2phase;
/* real-time quadrature-phase multipliers */
double RG1; /* duration of
predelay, seconds */
double RG2; /* duration of
postdealy, seconds */

Description: Set the quadrature phase, gate the observe channel
first and second decouplers on and off at the
current power level with amplifier blanking and
unblinking, and apply shaped- pulse patterns to all
channels. sim3shaped_pulse is preceded by a
predelay and followed by a postdelay. The
associated amplifiers are unblanked if they are in
pulse mode and the phase is set, at the beginning
of the predelay. The associated amplifiers are
blanked at the end of the postdelay if they are in
pulsed mode.

If they are not identical, the absolute difference in
any two pulse widths must be greater than or equal
to 0.1 µs to avoid delays less than the minimum of
0.05 µs. The longer pulse width will be truncated to
that of the shorter pulse width. If any of the pulse
widths is 0.0, sim3shaped_pulse will execute no
events and it will not interrupt waveform
decoupling that may be in progress on that channel.
The sim3shaped_pulse statement will not be
executed if all pulse widths are zero.

If a pattern is set to '', sim3shaped_pulse will
execute a square pulse on that channel.

Arguments: obspattern, decpattern, and dec2pattern are the
root names of text files with a .RF extension in

sim4shaped_pulse Perform simultaneous
shaped pulses, observe, first,
second, and third decouplers

simpulse Perform simultaneous
pulses, observe and first
decoupler

sim3pulse Perform simultaneous
pulses, observe, first, and
second decouplers

sim4pulse Perform simultaneous
pulses, observe, first, second,
and third decouplers

362 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

shapelib, containing the shape names for the
observe channel first and second decouplers,
respectively.

obswidth, decwidth, and dec2width are the
durations of the pulses, in seconds, for the observe
channel first and second decouplers, respectively.

obsphase, decphase, and dec2phase are a 90°
phase multipliers of the observe and first decoupler
channels, respectively. The value must be a
real- time variable (v1 to v42, oph, etc), a real- time
constant (zero, one, etc) or a real- time table (t1 to
t60).

RG1 is the duration of the predelay, in seconds.

RG2 is the duration of the postdelay, in seconds.
Examples: sim3shaped_pulse("gauss","hrm180","sinc",pw,p1,p2,

v2,v5,v6,rof1,rof2);
sim3shaped_pulse("dumy","hrm180","sinc",0.0,
p1,p2,v2,v5,v6,rof1,rof2);

sim4shaped_pulse Perform simultaneous shaped pulses, observe, first, second and third decouplers

Syntax: sim4shaped_pulse(obspattern,decpattern,dec2pattern,d
ec3pattern,obswidth,decwidth,dec2width,dec3w
idth,obsphase,decphase,dec2phase,dec3phase,R
G1,RG2)
char
*obspattern,*decpattern,*dec2pattern,*dec3pa
ttern;
/* names of .RF text files */

Related: decrgpulse Perform pulse on first
decoupler

decshaped_pulse Perform shaped pulse on
first decoupler

rgpulse Perform pulse on observe
channel

shaped_pulse Perform shaped pulse on
observe channel

simshaped_pulse Perform simultaneous
shaped pulses, observe and
first decoupler

sim4shaped_pulse Perform simultaneous
shaped pulses, observe, first,
second, and third decouplers

simpulse Perform simultaneous pulses,
observe and first decoupler

sim3pulse Perform simultaneous pulses,
observe, first, and second
decouplers

sim4pulse Perform simultaneous pulses,
observe, first, second, and
third decouplers

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 363

double obswidth,decwidth,dec2width,dec3width;
/* pulse durations, seconds */
int obsphase,decphase,dec2phase,dec3phase;
/* real-time quadrature-phase multipliers */
double RG1; /* duration of
predelay, seconds */
double RG2; /* duration of
postdelay, seconds */

Description: Set the quadrature phase, gate the observe channel
first, second and third decouplers on and off at the
current power level with amplifier blanking and
unblinking, and apply shaped- pulse patterns to all
channels. sim4shaped_pulse is preceded by a
predelay and followed by a postdelay. The
associated amplifiers are unblanked if they are in
pulse mode and the phase is set, at the beginning
of the predelay. The associated amplifiers are
blanked at the end of the postdelay if they are in
pulsed mode.

If they are not identical, the absolute difference in
any two pulse widths must be greater than or equal
to 0.1 µs to avoid delays less than the minimum of
0.05 µs. The longer pulse width will be truncated to
that of the shorter pulse width. If any of the pulse
widths is 0.0, sim4shaped_pulse will execute no
events and it will not interrupt waveform
decoupling that may be in progress on that channel.
The sim3shaped_pulse statement will not be
executed if all pulse widths are zero.

If a pattern is set to '', sim4shaped_pulse will
execute a square pulse on that channel.

Arguments: obspattern, decpattern, dec2pattern, and
dec3pattern are the root names of text files with
a .RF extension in shapelib, containing the shape
names for the observe channel, first, second and
third decouplers, respectively.

obswidth, decwidth, dec2width, and dec3width are
the durations of the pulses, in seconds, for the
observe channel, first, second and third decouplers,
respectively.

obsphase, decphase, dec2phase, and dec3phase are
a 90° phase multipliers of the observe channel, first,
second, and third decoupler channels, respectively.
The value must be a real- time variable (v1 to v42,
oph, etc), a real- time constant (zero, one, etc) or a
real- time table (t1 to t60).

RG1 is the duration of the predelay in seconds.

RG2 is the duration of the postdelay in seconds.
Examples: sim4shaped_pulse("gauss","hrm180","sinc","sinc",pw

,p1,p2,p3,v2,v5,v6,v7,rof1,rof2);
sim4shaped_pulse("dumy","hrm180","sinc","sin
c",0.0,p1,p2,p3,v2,v5,v6,v7,rof1,rof2);

364 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

sp#off Turn off spare line (# = 1, 2, or 3)

Syntax: sp1off(),sp2off(),sp3off()

Description: Turn off the specified user spare line connector for
high- speed device control.

Examples: sp1off();
sp3off();

sp#on Turn on spare line (# = 1, 2, or 3)

Syntax: sp1on(),sp2on(),sp3on()

Description: Turn on the specified user- dedicated spare line
connector for high- speed device control.

Examples: sp1on();
sp3on();

Related: decrgpulse Perform pulse on first
decoupler

decshaped_pulse Perform shaped pulse on
first decoupler

rgpulse Perform pulse on observe
channel

shaped_pulse Perform shaped pulse on
observe channel

simshaped_pulse Perform simultaneous
shaped pulses, observe and
first decoupler

sim3shaped_pulse Perform simultaneous
shaped pulses, observe, first,
and second decouplers

simpulse Perform simultaneous
pulses, observe and first
decoupler

sim3pulse Perform simultaneous
pulses, observe, first, and
second decouplers

sim4pulse Perform simultaneous
pulses, observe, first, second,
and third decouplers

Related: sp#off Turn off spare line (# = 1,2 or 3)
sp#on Turn on spare line (# = 1,2 or 3)

Related: sp#off Turn off spare line (# = 1,2 or 3)
sp#on Turn on spare line (# = 1,2 or 3)

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 365

spinlock Perform waveform spinlock on observe channel

Syntax: spinlock(pattern,90_pulselength,tipangle_resoln,phas
e,ncycles)
char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90-degree pulse
length in seconds */
double tipangle_resoln; /* tip-angle
resolution */
int phase; /* real-time quadrature-phase
multiplier */
int ncylces; /* number of cycles */

Description: Execute a spinlock with an integer number of cycles
of programmable decoupling on the obseve channel
under waveform control. spinlock unblanks and
blanks the associated amplifier and gates the
observe channel on and off for patterns without an
explicit gate column. It is good practice to unblank
the associated amplifier with obsunblank, at least
2.0 µs before spinlock.

Arguments: pattern is is the root name of a .DEC file in
shapelib containing the waveform shape name.

90_pulselength is the pulse time- duration, in
seconds, for an element, a block of elements, or an
integer divisor of all elements in the pattern, which
is labeled with a tip- angle duration equal to 90°.
Often, 90_pulselength is set equal 1/dmf, where
dmf is a step rate.

tipangle_resoln is the smallest common divisor of
the tip- angle durations of all the elements of the
pattern.

For many patterns, 90_pulselength is the actual
90° pulse length and the elements are labeled with
tip- angle durations that are multiples of 90. In this
case, tipangle_resoln is 90.0.

For many other patterns, 90_pulselength is set to
be the duration of the minimum stepsize of which
all elements are multiples. In these cases,
tipangle_resoln is nominally 90 and elements in
the pattern have tip- angle durations that are
multiples of 90.

For some patterns 90_pulselength is the actual 90°
pulse length, but elements of the pattern have
arbitrary flip angles that are multiples of a
tipangle_resoln that is less than 90° (c.f. 1.0°). In
this case, tipangle_resoln is the divisor (c.f. 1.0)
and for good practice it is also a divisor of 90.0.

phase is a 90° multiplier for the phase of the
observe channel. The value must be a real- time
variable (v1 to v42, oph, etc), a real- time constant
(zero, one, etc) or a real- time table (t1 to t60).

ncycles is the number of times that the spin- lock
pattern is to be executed.

366 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Examples: spinlock("mlev16",pw90,90.0,v1,50);
spinlock(locktype,pw,resol,v1,cycles);

startacq Initialize explicit acquisition

Syntax: startacq(delay)
double delay; /* time duration before
the next event*/

Description: Initialize the VNMRS digital receiver for acquisition,
when explicit sample statements are used for
acquisition. The statement startacq first executes
a rcvron statement with the delay rof3. If rof3 is
not defined, a delay of 2.0 µs is used.

The value of delay is usually set with the
parameter alfa and typically alfa = 4.0–6.0 µs.
Sequences for solid- state NMR often use the
parameter ad with the same value. startacq
finishes with a duration of delay - rof3. If delay
< rof3 or 2.0 µs, startacq has a minimum duration
of rof3 or
2.0 µs.

The startacq statement holds the acquisition of the
first point until the first sample statement is
executed. For a usual, continuous acquisition,
startacq is immediately followed by
sample(np/(2.0*sw); endacq();.

For implicit acquisition, startacq is executed
automatically with the alfa delay and it should not
be included.

For a windowed, explicit acquisition, startacq is
followed by a loop containing sample statements
and then endacq(). If startacq is used explicitily
before the loop that contains sample statements,
continuous sampling, then zeros will be inserted
between sample statements before downsampling. If
startacq is not included before a windowed
explicit acquisition loop, the startacq statement
will be inserted automatically with a delay of alfa.
In this case, explicit sampling, data will be
obtained only during the sample statements and the
blocks of data will be concatenated.

Examples: startacq(alfa);
startacq(ad);

Related: decspinlock Perform waveform spinlock on
second decoupler

dec2spinlock Perform waveform spinlock on
second decoupler

dec3spinlock Perform waveform spinlock on
third decoupler

dec4spinlock Perform waveform spinlock on
fourth decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 367

startacq_obs Initialize explicit acquisition in parallel section

Syntax: startacq_obs(delay)

double delay; /* time duration before
the next event */

Description: Analogous to the startacq statement but to be used
in "obs" parallel sections of a pulse sequence.

startacq_rcvr Initialize explicit acquisition in parallel section

Syntax: startacq_rcvr(delay)

double delay; /* time duration before
the next event */

Description: Analogous to the startacq statement but to be used
in "rcvr" parallel sections of a pulse sequence.

Related: acquire Acquire data explicitly
rcvroff Turn on receiver and blank observe

amplifier
rcvron Turn off receiver and unblank

observe amplifier
sample Acquire data explicitly during time

delay
startacq Initialize explicit acquisition

Related: acquire_obs Acquire data explicitly in
parallel section

acquire_rcvr Acquire data explicitly in
parallel section

startacq_rcvr Initialize explicit
acquisition in parallel
section

endacq_obs End explicit acquisition
in parallel section

endacq_rcvr End explicit acquisition
in parallel section

parallelacquire_obs Acquire data explicitly in
parallel section

parallelacquire_rcvr Acquire data explicitly in
parallel section

Related: acquire_obs Acquire data explicitly in
parallel section

acquire_rcvr Acquire data explicitly in
parallel section

startacq_obs Initialize explicit
acquisition in parallel
section

368 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

starthardloop Start hardware loop (obsolete)

Syntax: status(count)
int count; /* real-time variable
with loop count */

Description: Start a real- time loop with count reptitions. This
statement is identical to the loop statement, except
that the loop index is not accessible. The
starthardloop statement is obsolete. Use the loop
- endloop statements instead.

Arguments: count is the number of loop repetitions. It must be
a real- time variable (v1 to v42) or an index (id2,
id3, etc).

status Set status of decoupler and homospoil

Syntax: status(state)
int state; /* index: A, B, C, ..., Z */

Description: Set decoupler and homospoil gating based on
parameters. The global variables and parameters
that control status are strings: dm (first decoupler
mode), dmm (first decoupler modulation mode), dm2
(second decoupler mode), dmm2 (second decoupler
modulation mode), dm3 (third decoupler mode),
dmm3 (third decoupler modulation mode), dm4
(fourth decoupler mode), dmm4 (fourth decoupler
modulation mode), xm (observe- channel mode), and
xmm (observe- channel modulation mode).

The character values of the parameters for
decoupler mode are 's', 'y', and 'n' and they
determine whether the transmitter is
on- synchronously, on- asynchronously, or off. The
characters of the decoupler modulation- mode
parameters control waveform decoupling. See the
Command and Parameter reference for the list of
choices.

endacq_obs End explicit acquisition
in parallel section

endacq_rcvr End explicit acquisition
in parallel section

parallelacquire_obs Acquire data explicitly in
parallel section

parallelacquire_rcvr Acquire data explicitly in
parallel section

Related: endhardloop End hardware loop
endloop End real- time loop
loop Start real- time loop

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 369

The functions executed by the status statement are
determined by the individual character values of
the status parameters, where character 0 controls
when state = A, character 1 controls when state
= B, and so forth. If a pulse sequence has more
status statements than there are characters in the
value of the particular parameter, control reverts to
the last character. Thus if dm ='ny', status(C) will
look for the third letter, find none, use the second
letter 'y', and leave the decoupler on.

The individual status characters can be accessed in
a sequence by designating an array index starting
at 0. For example, dm[0] is the value that controls
the decoupler mode during status(A).

The states do not have to be arranged
monotonically in the pulse sequence. You can write
a pulse sequence that starts with status(A), goes
later to status(B), then back to status(A), then to
status(C), etc. It is a usual convention that
status(A) controls the d1 delay and the last
character controls acquisition. Often, this character
corresponds to status(C), (character 2), whether
or not status(B) is present in the sequence.

The characters of the homospoil parameter hs
control the statement hsdelay. An hsdelay
statement will execute with a homospoil pulse if the
corresponding status character in hs is 'y'. If the
character is 'n' hsdelay will execute without a
homospoil pulse. Thus if hs ='ny', all hsdelay
statements that occur during status(B) will begin
with a homospoil pulse. The hs parameter will often
have one less character than the other status
parameters if the last status period is used only for
acquisition. An hsdelay statement will never be
found during an acquisition and thus a character is
not needed.

Arguments: state sets the status mode to A, B, C, ...Z. The
status modes are controlled by the respective
characters of the global status variables and their
respective parameters, for example, dm and dmm.

Examples: status(A);

statusdelay Execute status statement within time delay

Syntax: statusdelay(state,time)
int state; /* A, B, C, ... Z */

Related: hsdelay Execute time delay with optional
homospoil pulse

setstatus Set decoupler status of any
channel

statusdelay Execute status statement within
time delay

370 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

double time; /* duration of the statement,
seconds */

Description: Executes the status statement within a delay
specified by the argument time.

Arguments: state specifies the status mode with the values
A,B,C,...Z. The status modes are controlled by the
respective characters of the global status variables
and their respective parameters, for example dm and
dmm.

time is the duration of the statusdelay statement.
Examples: statusdelay(A,d1);

statusdelay(B,0.000010);

stepsize Set small-angle phase stepsize

Syntax: stepsize(step_size,channel)
double step_size; /* small-angle phase
stepsize */
int channel; /* OBSch, DECch,
DEC2ch, DEC3ch, DEC4ch*/

Description: Set the small- angle phase stepsize of any channel.

Arguments: step_size is a value in degrees that sets the phase
increment that corresponds to one unit of a
real- time phase multiplier.

channel is a global integer constant that designates
the obseve channel OBSch, first decoupler DECch,
second decoupler DEC2ch, third decoupler DEC3ch,
and fourth decoupler DEC4ch.

Examples: stepsize(30.0,OBSch);

Related: hsdelay Execute time delay
with optional
homospoil pulse

setstatus Set decoupler status
of any channel

status Set status of
decoupler and
homospoil

Related: decstepsize Set small- angle phase stepsize of
first decoupler

dec2stepsize Set small- angle phase stepsize of
second decoupler

dec3stepsize Set small- angle phase stepsize of
third decoupler

dec4stepsize Set small- angle phase stepsize of
fourth decoupler

obsstepsize Set small- angle phase stepsize of
observe channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 371

sub Subtract real-time integer values

Syntax: sub(vi,vj,vk)
codeint vi; /* real-time variable
for minuend */
codeint vj; /* real-time variable
for subtrahend */
codeint vk; /* real-time variable
for difference */

Description: Set the value of vk equal to the difference of integer
values of vi and vj.

Arguments: vi contains the value of the minuend, vj contains
the value of the subtrahend, and vk contains the
resulting difference. Each argument must be a
real- time variable (v1 to v42, oph, etc).

Examples: sub(v2,v5,v6);

swift_acquire Execute SWIFT rf pulses and gated acquire pulse train

Syntax: Syntax:swift_acquire(swiftshape, pw,
predelay)

char swiftshape[]; /* SWIFT shape
filename */

double pw; /* rf pulse width*/

double predelay; /* predelay */

Description: The swift_acquire statement executes the SWIFT
rf pulses and gated acquire pulse train [JMR vol 181
(2006) pp342- 349]. The standard or implicit acquire

stepsize Set small- angle phase stepsize of
any channel

xmtrphase Set small- angle phase of observe
channel

Related: add Add real- time integer values
assign Assign real- time integer value using

real- time integer
dbl Double real- time integer value
decr Decrement real- time integer value
divn Divide real- time integer values
hlv Assign half the value of real- time

integer
incr Increment real- time integer value
initval Assign real- time integer value using

numeric value
mod2 Assign real- time integer value modulo 2
mod4 Assign real- time integer value modulo 4
modn Assign real- time integer value modulo n
mult Multiply real- time integer values

372 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

is replaced by the swift_acquire. The SWIFT rf
pulses and gated acquire train executes for the
duration of acquisition time, at. The attenuator
power level for the rf pulse train should be set
before the swift_acquire statement using an
obspower statement. The swift_acquire
statement can be executed in parallel with an
oblique shaped gradient in a NOWAIT mode. It can
also be included inside a real- time loop statement,
such as loop(v1,v2).This is necessary if the
SWIFT pulse train is to executed while changing
frequency of the rf and carrier in real- time. It can
be accomplished using a create_offset_list
followed by voffsetch statements inside the
real- time loop. As SWIFT experiment tends to
acquire large amounts of data in very short periods
of time, appropriate data transfer and buffering
have to be setup on the DDR controller using the
nfmod parameter. A value of 256 for nfmod may be
appropriate under many conditions of nf, loop
counts, at, TR, np, and so on. The parameter dp
can be set to ‘n’ to minimize the amount of data to
be transferred to the host. The factor
pw*swiftmodfreq gives the duty cycle of rf pulse
train. In the case, where swiftmodfreq is not
defined, it defaults to pw*sw.

Arguments: swiftshape is the name of the rf shape file to be
executed.

pw is the length of the rf pulse between the acquire
events. pw is essentially “tau- p” in the above
mentioned reference.

predelay is the delay after the rf pulse and before
the acquire, similar to alfa parameter (not
currently implemented).

Other parameters that are used by
swift_acquire, though not presented as
arguments, are:

•swiftrof1, swiftrof2, swiftrof2- optional pre- and
post- delays around individual pw long rf events,
with corresponding functionality as rof1, rof2, and
rof3 respectively.

•swiftmodfreq – the modulation rate for the rf
gating scheme. It can be independent of sw
parameter. However, if swiftmodfreq is not defined,
the modulation rate for rf gating defaults to sw.

Examples: A simple SWIFT test sequence is included below:

/* swift_test */

#include <standard.h>

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 373

#define LISTSIZE 524288

void pulsesequence()

{

 char swiftshape[MAXSTR];

 double numloops = getval("numloops");

 double offsetlist[LISTSIZE];

 double deltaf = -1000.0;

 int i;

 if (numloops > LISTSIZE)

 abort_message("numloops is bigger
than LISTSIZE! abort!\n");

 for(i=0; i<numloops; i++)

 offsetlist[i] = -50000.0 + (del-
taf*i);

 getstr("swiftshape",swiftshape);

 create_offset_list(&offsetlist[0],
numloops, OBSch, 1);

 /* equilibrium period */

 status(A);

 obspower(tpwr);

 delay(d1);

 /* --- tau delay --- */

 status(B);

 delay(d2);

 rgpulse(pw,oph,rof1,rof2);

 initval(numloops,v10);

 loop(v10,v11);

 voffsetch(1, v11, OBSch);

 swift_acquire(swiftshape,pw,0.0);

 delay(d2);

 endloop(v11);

}

374 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Related: create_offset_
list

Create table of frequency offsets

voffsetch

loop Start real-time loop

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 375

T

text_error Send error message to VnmrJ

Syntax: text_error(message, varnames)
char *message /* formatted string
containing the message */
varnames /* char, int or double,
used in message */

Description: Send a formatted error message to VnmrJ and write
the message into the file userdir+'/psg.error'. The
formatting is similar to the C printf statement.

text_message Send message to VnmrJ

Syntax: text_message(message, varnames)
char *message /* formatted string
containing the message */
varnames /* char, int or double, used
in message */

Description: Send a formatted warning message to VnmrJ. The
formatting is similar to the C printf statement.

text_error Send error message to VnmrJ
text_message Send message to VnmrJ
triggerSelect Select trigger input on MRI User Panel
tsadd Add integer to table elements
tsdiv Divide integer into table elements
tsmult Multiply integer with table elements
tssub Subtract integer from table elements
ttadd Add table to second table
ttdiv Divide table into second table
ttmult Multiply table by second table
ttsub Subtract table from second table
txphase Set quadrature phase of observe channel

Related: abort_message Abort PSG at run- time and send
message to VnmrJ

psg_abort Abort PSG Process
text_message Send message to VnmrJ
warn_message Send warning message to VnmrJ

Related: abort_message Abort PSG at run- time and send
message to VnmrJ

psg_abort Abort PSG Process
text_error Send error message to VnmrJ
warn_message Send warning message to VnmrJ

376 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

triggerSelect Select trigger input on MRI User Panel

Syntax: triggerSelect(a)
int a /* A, B or C*/

Description: Select one of the three input BNCs (INPUT1,
INPUT2, or INPUT3) on the MRI GUser panel on the
back of the console and connects it to the OUTPUT
BNC. The internal input is a 25 kHz square wave.

Arguments: a is an integer argument that determines which
input is selected:

A value A Selects INPUT1

A value B Selects INPUT2

A value C Selects INPUT3
Examples: triggerSelect(B);

tsadd Add integer to table elements

Syntax: tsadd(table,scalarval,moduloval)
codeint table; /* real-time table to be
modified */
int scalarval; /* integer to be added */
int moduloval; /* modulo value of result
*/

Description: A real- time operation that adds an integer to all
elements of a table.

Arguments: table specifies the name of the table (t1 to t60).

scalarval is an integer to be added to each
element of the table.

moduloval is the modulo value taken on the result
of the operation, if moduloval is greater than 0.

Examples: tsadd(t31,4,4);

tsdiv Divide integer into table elements

Syntax: tsdiv(table,scalarval,moduloval)
codeint table; /* real-time table to be

Related: loadtable Assign table elements from table text
file

settable Assign integer array to table
tsdiv Divide an integer into table elements
tsmult Mutiply and integer with table

elements
tssub Subtract an integer from table

elements
ttadd Add table to second table
ttdiv Divide table into second table
ttmult Multiply table by second table
ttsub Subtract table from second table

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 377

modified */
int scalarval; /* integer divisor */
int moduloval; /* modulo value of result
*/

Description: A real- time operation that divides an integer into
all elements of a table.

Arguments: table specifies the name of the table (t1 to t60).

scalarval is an integer to be divided into each
element of the table. scalarval must not equal 0;
otherwise, an error is displayed and PSG aborts.

moduloval is the modulo value taken on the result
of the operation, if moduloval is greater than 0.

Examples: tsdiv(t31,4,4);

tsmult Multiply integer with table elements

Syntax: tsmult(table,scalarval,moduloval)
codeint table; /* real-time table to
be modified */
int scalarval; /* integer multiplier */
int moduloval; /* modulo value of result
*/

Description: A real- time operation that multiplies all elements of
a table by an integer.

Arguments: table is the name of the table (t1 to t60).

scalarval is an integer to be multiplied by each
element of the table.

moduloval is the modulo value taken on the result
of the operation, if moduloval is greater than 0.

Examples: tsmult(t31,4,4);

Related: loadtable Assign table elements from table text
file

settable Assign integer array to table
tsadd Add integer to table elements
tsmult Mutiply integer with table elements
tssub Subtract integer from table elements
ttadd Add table to second table
ttdiv Divide table into second table
ttmult Multiply table by second table
ttsub Subtract table from second table

Related: loadtable Assign table elements from table text
file

settable Assign integer array to table
tsadd Add integer to table elements
tsdiv Divide integer into table elements

378 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

tssub Subtract integer from table elements

Syntax: tssub(table,scalarval,moduloval)
codeint table; /* real-time table to be
modified */
int scalarval; /* integer to be
subtracted */
int moduloval; /* modulo value of result
*/

Description: A real- time operation that subtracts an integer from
all elements of a table.

Arguments: table is the name of the table (t1 to t60).

scalarval is an integer to be subtracted from each
element of the table.

moduloval is the modulo value taken on the result
of the operation, if moduloval is greater than 0.

Examples: tssub(t31,4,4);

ttadd Add table to second table

Syntax: ttadd(table_dest,table_mod,moduloval)
codeint table_dest; /* real-time table to
be modified */
codeint table_mod; /* real-time table to
be added */
int moduloval; /* modulo value of result
*/

Description: A real- time operation that adds table_mod to
table_dest and returns a new table_dest.

Arguments: table_dest is the name of the destination table (t1
to t60).

tssub Subtract integer from table elements
ttadd Add table to second table
ttdiv Divide table into second table
ttmult Multiply table by second table
ttsub Subtract table from second table

Related: loadtable Assign table elements from table
text file

settable Assign integer array to table
tsadd Add integer to table elements
tsdiv Divide integer into table elements
tsmult Mutiply integer with table elements
ttadd Add table to second table
ttdiv Divide table into second table
ttmult Multiply table by second table
ttsub Subtract table from second table

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 379

table_mod is the name of the table (t1 to t60) that
modifies table_dest. Each element in table_dest
is modified by the corresponding element in
table_mod and the result is stored in table_dest.
The number of elements in table_dest must be
greater than or equal to the number of elements in
table_mod.

moduloval is the modulo value taken on the result
of the operation, if moduloval is greater than 0.

Examples: ttadd(t28,t42,6);

ttdiv Divide table into second table

Syntax: ttdiv(table_dest,table_mod,moduloval)
codeint table_dest; /* real-time table to be
modified */
codeint table_mod; /* real-time table
containing integer divisors */
int moduloval; /* modulo value of result
*/

Description: A real- time operation that provides an integer
division of table_dest by table_mod and returns a
new table_dest.

Arguments: table_dest is the name of the destination table (t1
to t60).

table_mod is the name of the table (t1 to t60) that
modifies table_dest. Each element in table_dest
is modified by the corresponding element in
table_mod, and the result is stored in table_dest.
The number of elements in table_dest must be
greater than or equal to the number of elements in
table_mod. No element in table_mod can be equal
to 0.

moduloval is the modulo value taken on the result
of the operation, if moduloval is greater than 0.

Examples: ttdiv(t28,t42,6);

Related: loadtable Assign table elements from table text
file

settable Assign integer array to table
tsadd Add integer to table elements
tsdiv Divide integer into table elements
tsmult Mutiply integer with table elements
tssub Subtract integer from table elements
ttdiv Divide table into second table
ttmult Multiply table by second table
ttsub Subtract table from second table

380 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

ttmult Multiply table by second table

Syntax: ttmult(table_dest,table_mod,moduloval)
codeint table_dest; /* real-time table to
be modified */
codeint table_mod; /* real-time table
containing multipliers */
int moduloval; /* modulo value of result
*/

Description: A real- time operation that multiplies table_dest by
table_mod and returns a new table_dest.

Arguments: table_dest is the name of the destination table (t1
to t60).

table_mod is the name of the table (t1 to t60) that
modifies table_dest. Each element in table_dest
is modified by the corresponding element in
table_mod, and the result is stored in table_dest.
The number of elements in table_dest must be
greater than or equal to the number of elements in
table_mod.

moduloval is the modulo value taken on the result
of the operation, if moduloval is greater than 0.

Examples: ttmult(t28,t42,6);

Related: loadtable Assign table elements from table text
file

settable Assign integer array to table
tsadd Add integer to table elements
tsdiv Divide integer into table elements
tsmult Mutiply integer with table elements
tssub Subtract integer from table elements
ttadd Add table to second table
ttdiv Divide table into second table
ttsub Subtract table from second table

Related: loadtable Assign table elements from table text
file

settable Assign integer array to table
tsadd Add integer to table elements
tsdiv Divide integer into table elements
tsmult Mutiply integer with table elements
tssub Subtract integer from table elements
ttadd Add table to second table
ttdiv Divide table into second table
ttsub Subtract table from second table

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 381

ttsub Subtract table from second table

Syntax: ttsub(table_dest,table_mod,moduloval)
codeint table_dest; /* real-time table to
be modified */
codeint table_mod; /* real-time table to
be subtracted */
int moduloval; /* modulo value of
result */

Description: A real- time operation that subtracts table_mod
from table_dest and returns a new table_dest.

Arguments: table_dest is the name of the destination table (t1
to t60).

table_mod is the name of the table (t1 to t60) that
modifies table_dest. Each element in table_dest
is modified by the corresponding element in
table_mod and the result is stored in table_dest.
The number of elements in table_dest must be
greater than or equal to the number of elements in
table_mod.

moduloval is the modulo value taken on the result
of the operation, if moduloval is greater than 0.

Examples: ttsub(t28,t42,6);

txphase Set quadrature phase of observe channel

Syntax: txphase(mutiplier)
codeint multiplier; /* real-time
quadrature-phase multiplier */

Description: Explicitly set the quadrature phase (multiple of 90°)
for the observe channel outside of a pulse. If a
small- angle phase has been set previously with
xmtrphase, txphase adjusts only the portion of the
phase that is a multiple of 90°. Use
xmtrphase(zero) to clear any small- angle phase if
desired.

Arguments: multiplier is a 90° multiplier for the
observe- channel phase. The value must be a
real- time variable (v1 to v42, oph, etc), a real- time

Related: loadtable Assign table elements from table text
file

settable Assign integer array to table
tsadd Add integer to table elements
tsdiv Divide integer into table elements
tsmult Mutiply integer with table elements
tssub Subtract integer from table elements
ttadd Add table to second table
ttdiv Divide table into second table
ttmult Multiply table by second table

382 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

constant (zero, one, etc) or a real- time table (t1 to
t60).

Examples: txphase(v3);

Related: decphase Set quadrature phase of first
decoupler

dec2phase Set quadrature phase of second
decoupler

dec3phase Set quadrature phase of third
decoupler

dec4phase Set quadrature phase of fourth
decoupler

xmtrphase Set small- angle phase of observe
channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 383

U

userDECshape Create waveform pattern directly, with interpolation

Syntax: userDECshape(pattern,decpat_struct,tipangle_res
on,mode,nsteps, channel)

char *pattern /* name
of .DEC text file */

DECpattern *decpat_struct /* pointer to
struct DECpattern */

double tipangle_reson /*
tip-angle resolution */

int mode /*
unknown */

int nsteps /* number of
steps in pattern */

int channel /* the channel on which
waveform is run*/

Description: The userDECshape statement creates a waveform
pattern from information in an array of a structure
of type DECpattern, each element containing fields
for tip, phase, amp, gate, phase_inc, and
amp_inc. userDECshape creates a waveform
pattern at run time and downloads it directly to the
appropriate RF controller, without writing a .DEC
file. The pattern, when run, accesses the
interpolation processor of the RF controller to
generate ramped elements using the values of
phase_inc and amp_inc.

The pulse sequence should have code to populate
the fields tip, phase, amp, gate, phase_inc,
and amp_inc. for each element of the pattern, 0 to
nsteps - 1. See the example for coding
instructions. The pattern is run with obsprgon,
decprgon, etc where argument 1 is pattern,
argument 2 (90_pulselength) is the step size and
argument 3 is tipangle_resoln.

The interpolator is used to execute elements with
multiple steps, where the number of steps per
element is
tip/(tipangle_resoln*90_pulselength) where
tip is the duration of an element. The maximum
number of steps per element is 256 and the
minimum is 1. If the number of steps is greater
than 256, multiple elements are created.

userDECshape Create waveform pattern directly, with interpolation

384 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

If the fields phase_inc and amp_inc are non zero
the waveform pattern contains ramped elements.
For each element, the first step has a phase of
phase and an amplitude amp. Each succeeding step
in the element is incremented by phase_inc and
amp_inc. Phase is expressed in degrees with 16- bit
(0.0055°) resolution and amplitude is expressed in
amplitude units 0.0 to 1023.0 units with 16- bit
(0.0625 unit) resolution.

The number of steps in a ramped, interpolated
element has only a slight effect upon the efficiency
of execution. The break point for improved
efficiency occurs with pattern elements of about 3
to 5 steps. For long elements interpolation improves
efficiency 50 to 100 fold compared to execution of
elements with 1 step.

Ramped elements with multiple steps can have
variable durations with a flip- angle or time
resolution equal to the step size. When using
elements with multiple steps, pulses in the
waveform can be set with resolution of the step size
rather than the element size. With interpolation,
the RF controllers can sustain waveform output
with a 25 ns or 50 ns step size, though it is
necessary to keep the average duration of an
elements at about 100 to 300 ns.

One should note that ramped, interpolated elements
can have only that slope generated by a constant
increment. The interpolator cannot dither (vary) the
phase and amplitude increment within an element
to produce an arbitrary slope. However it is possible
to dither adjacent elements to achieve an average
slope over a longer time.

Arguments: pattern is the root name of the pattern and is the
same as argument 1 of obsprgon, decprgon etc. The
userDECshape statement does not write a .DEC file.

decpat_struct is an array of structures of type
DECpattern with values to create the pattern.

tipangle_reson is the smallest common divisor
of the tip- angle durations of all the elements of the
pattern and is the same as argument 3 of
obsprgon, decprgon, etc.

mode is an unknown parameter that should be set
to 1

nsteps is the number of steps in the pattern.

channel is an integer constant to identify the
channel on which the waveform will be run and can
be OBSch, DECch, DEC2ch, DEC3ch, and DEC4ch.

Examples: The array of structures is best declared with a
malloc statement as shown below where pstub is
the array variable name.

DECpattern *pstub;

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 385

pstub (DECpattern *)
malloc(NSTEPS*sizeof(struct
_DECpattern);

where NSTEPS is an int number of waveform
elements greater than any expected value of
nsteps. This code allocates memory for an array
of DECpattern structures, one for each element of
the waveform.

Populate the fields of each DECpattern structure
for index = 0 to nsteps - 1:

pstub[index].tip = tip- angle duration

pstub[index].phase = starting phase

pstub[index].amp = starting amp;itude

pstub[index].gate = gate value

pstub[index].phase_inc = phase increment
perstep

pstub[index].amp_inc = amplitude increment
per step

Create the pattern for obs with the syntax:

userDECshape("mypattern",pstub,90.0,1,ns
teps,OBSch)

where "mypattern" is the root string that has been
chosen to name the pattern, 90.0 assumes that the
tip- angle durations are multiples of 90.0. Argument
4 must be 1.

This pattern might be run with
obsprgon("mypattern",50.0e-9,90.0); where
the step size (90_pulselength) is 50.0 ns. Here
the convention is used that 90.0 degrees of
tip- angle resolution represent the step size,
independent of the actual tip- angle.

If a pattern is created it must be used at least once.
If obsprgon is executed with a conditional so must
userDECshape.

Related: decprgon Start waveform decoupling on first
decoupler

dec2prgon Start waveform decoupling on
second decoupler

dec3prgon Start waveform decoupling on third
decoupler

dec4prgon Start waveform decoupling on fourth
decoupler

init_decpat
tern

Create pattern file for waveform
decoupling

obsprgon Start waveform decoupling on
observe channel

userRFshape Create shaped- pulse pattern directly

386 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 387

V

var_active Check if parameter is used

Syntax: int value = var_active(parname)

Description: Determine if the numeric parameter parname is
active (value = 1) or inactive (value = 0). "Inactive"
means that the parameter does not exisit in the
current parameter table or that it is set to 'n'.

vdecpwrf Set fine power level of first decoupler in real-time

Syntax: vdecpwrf(vamplitude)

codeint vamplitude; /*real- time variable or table to set fine
power */

Description: Set the fine power in real- time for the first
decoupler using vamplitude, a real- time variable or
a table. The default range of values of vamplitude
is 0 to 4095, similar to that of the decpwrf
statement. The default amplitude resolution for this
statement is 12- bits, because real- time integer and
tables may not have fractional values.

To use vdecpwrf with 16- bit amplitude resolution,
include the statement vdecpwrfstepsize(16);
before the use of vdecpwrf to reset the range as 0
to 65536.

Arguments: vamplitude must be a real- time variable (v1 to v42,
etc), or a real- time table (t1 to t60) with values of
0 to 4095. The statement vdecpwrfstepsize(N) (
N = 1,2,4,8 and 16) resets the maximum value of
vamplitude to N*4096 - 1 and sets the amplitude
resolution as 12, 13, 14, 15 or 16 bits respectively,
if the hardware allows it.

var_active Check parameter is used
vdecpwrf Set fine power level of first decoupler in real-time
vdecpwrfstepsize Set step size for real-time fine power of first decoupler
vdec2pwrf Set fine power level of second decoupler in real-time
vdec2pwrfstepsize Set step size for real-time fine power of second decoupler
vdec3pwrf Set fine power level of third decoupler in real-time
vdec3pwrfstepsize Set step size for real-time fine power of third decoupler
vdec4pwrf Set fine power level of fourth decoupler in real-time
vdec4pwrfstepsize Set step size for real-time fine power of fourth decoupler
vdelay Execute time delay with fixed timebase and real-time

count
vdelay_list Get delay value from delay list with real- time index
vobspwrf Set fine power level of observe channel in real-time
vobspwrfstepsize Set step size for real-time fine power of observe channel

388 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

vdecpwrfstepsize Set step size for real-time fine power of first decoupler

Syntax: vdecpwrfstepsize(ampstepsize)
double ampstepsize /*multiplier of the
fine-power maximum */

Description: Set the step size for the real- time fine power
statement vdecpwrf. The argument ampstepsize
can have whole- number values of 1,2,4,8,and 16
and it increases the default maximum of
vamplitude for the real- time fine power statement
vdec4pwrf(vamplitude). This ampstepsize has no
effect upon the maximum of the run- time fine
power statement decpwrf, which remains at 4095.0.

The new maximum is ampstepsize*4096 - 1. The
new maximum allows increased amplitude
resolution for a vamplitude step of 1. Values of
ampstepsize of 1,2,4,8 and 16 provide amplitude
resolution of 12, 13, 14 15 and 16 bits respectively,
when the transmitter hardware allows it.

The statement vdecpwrfstepsize is executed at run
time and it must precede the use of vdecpwrf in
the sequence. It can be used multiple times in the
sequence to reset the maximum.

Related: decpwrf Set fine power level of first
decoupler

vdecpwrfstepsize Set step size for real- time
fine power of first
decoupler

vdec2pwrf Set fine power level of
second decoupler in
real- time

vdec2pwrfstepsize Set step size for real- time
fine power of second
decoupler

vdec3pwrf Set fine power level of third
decoupler in real- time

vdec3pwrfstepsize Set step size for real- time
fine power of third
decoupler

vdec4pwrf Set fine power level of
fourth decoupler in
real- time

vdec4pwrfstepsize Set step size for real- time
fine power of fourth
decoupler

vobspwrf Set fine power level of
observe channel in
real- time

vobspwrfstepsize Set step size for real- time
fine power of observe
channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 389

Arguments: ampstepsize is a double with recommended whole
number values of 1,2,4,8 and 16 to obtain real- time
amplitude resolution of 12,13,14,15 and 16 bits,
when the transmitter hardware allows it.

vdec2pwrf Set fine power level of second decoupler in real-time

Syntax: vdec2pwrf(vamplitude)
codeint vamplitude; /* real-time variable or
table to set fine power */

Description: Set the fine power in real- time for the second
decoupler using vamplitude, a real- time variable or
a table. The default range of values of vamplitude
is 0 to 4095, similar to that of the dec2pwrf
statement. The default amplitude resolution for this
statement is 12- bits, because real- time integer and
tables may not have fractional values.

To use vdec2pwrf with 16- bit amplitude resolution,
include the statement vdec2pwrfstepsize(16);
before the use of vdec2pwrf to reset the range as
0 to 65536.

Arguments: vamplitude must be a real- time variable (v1 to v42,
etc), or a real- time table (t1 to t60) with values of
0 to 4095. The statement vdec2pwrfstepsize(N) (
N = 1,2,4,8 and 16) resets the maximum value of

Related: decpwrf Set fine power level of
observe channel

vdecpwrf Set fine power level of first
decoupler in real- time

vdec2pwrf Set fine power level of
second decoupler in
real- time

vdec2pwrfstepsize Set step size for real- time
fine power of second
decoupler

vdec3pwrf Set fine power level of third
decoupler in real- time

vdec3pwrfstepsize Set step size for real- time
fine power of third
decoupler

vdec4pwrf Set fine power level of
fourth decoupler in
real- time

vdec4pwrfstepsize Set step size for real- time
fine power of fourth
decoupler

vobspwrf Set fine power level of
observe channel in real- time

vobspwrfstepsize Set step size for real- time
fine power of observe
channel

390 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

vamplitude to N*4096 - 1 and sets the amplitude
resolution as 12, 13, 14, 15 or 16 bits respectively,
if the hardware allows it.

vdec2pwrfstepsize Set step size for real-time fine power of second decoupler

Syntax: vdec2pwrfstepsize(ampstepsize)
double ampstepsize /*multiplier of the
fine-power maximum */

Description: Set the step size for the real- time fine power
statement vdec2pwrf. The argument ampstepsize
can have whole- number values of 1,2,4,8,and 16
and it increases the default maximum of
vamplitude for the real- time fine power statement
vdec4pwrf(vamplitude). This stepsize has no
effect upon the maximum of the run- time fine
power statement dec4pwrf, which remains at
4095.0.

The new maximum is stepsize*4096 - 1. The new
maximum allows increased amplitude resolution for
a vamplitude step of 1. Values of ampstepsize of
1,2,4,8 and 16 provide amplitude resolution of 12,
13, 14 15 and 16 bits respectively, when the
transmitter hardware allows it.

Related: dec2pwrf Set fine power level of
observe channel

vdecpwrf Set fine power level of first
decoupler in real- time

vdecpwrfstepsize Set step size for real- time
fine power of first
decoupler

vdec2pwrfstepsize Set step size for real- time
fine power of second
decoupler

vdec3pwrf Set fine power level of third
decoupler in real- time

vdec3pwrfstepsize Set step size for real- time
fine power of third
decoupler

vdec4pwrf Set fine power level of
fourth decoupler in
real- time

vdec4pwrfstepsize Set step size for real- time
fine power of fourth
decoupler

vobspwrf Set fine power level of
observe channel in
real- time

vobspwrfstepsize Set step size for real- time
fine power of observe
channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 391

The statement vdec2pwrfstepsize is executed at
run time and it must precede the use of vdec2pwrf
in the sequence. It can be used multiple times in
the sequence to reset the maximum.

Arguments: ampstepsize is a double with recommended whole
number values of 1,2,4,8 and 16 to obtain real- time
amplitude resolution of 12,13,14,15 and 16 bits,
when the transmitter hardware allows it.

vdec3pwrf Set fine power level of third decoupler in real-time

Syntax: vdec3pwrf(vamplitude)
codeint vamplitude; /* real-time variable or
table to set fine power */

Description: Set the fine power in real- time for the third
decoupler using vamplitude, a real- time variable or
a table. The default range of values of vamplitude
is 0 to 4095, similar to that of the dec3pwrf
statement. The default amplitude resolution for this
statement is 12- bits, because real- time integer and
tables may not have fractional values.

To use vdec3pwrf with 16- bit amplitude resolution,
include the statement vdec3pwrfstepsize(16);

Related: dec2pwrf Set fine power level of
observe channel

vdecpwrf Set fine power level of first
decoupler in real- time

vdecpwrfstepsize Set step size for real- time
fine power of first
decoupler

vdec2pwrf Set fine power level of
second decoupler in
real- time

vdec3pwrf Set fine power level of
third decoupler in real- time

vdec3pwrfstepsize Set step size for real- time
fine power of third
decoupler

vdec4pwrf Set fine power level of
fourth decoupler in
real- time

vdec4pwrfstepsize Set step size for real- time
fine power of fourth
decoupler

vobspwrf Set fine power level of
observe channel in
real- time

vobspwrfstepsize Set step size for real- time
fine power of observe
channel

392 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

before the use of vdec3pwrf to reset the range as
0 to 65536.

Arguments: vamplitude must be a real- time variable (v1 to v42,
etc), or a real- time table (t1 to t60) with values of
0 to 4095. The statement vdec3pwrfstepsize(N) (
N = 1,2,4,8 and 16) resets the maximum value of
vamplitude to N*4096 - 1 and sets the amplitude
resolution as 12, 13, 14, 15 or 16 bits respectively,
if the hardware allows it.

vdec3pwrfstepsize Set step size for real-time fine power of fourth decoupler

Syntax: Syntax: vdec3pwrfstepsize(ampstepsize)
double ampstepsize /*multiplier of the
fine-power maximum */

Description: Set the step size for the real- time fine power
statement vdec3pwrf. The argument ampstepsize
can have whole- number values of 1,2,4,8,and 16
and it increases the default maximum of
vamplitude for the real- time fine power statement
vdec3pwrf(vamplitude). This ampstepsize has no
effect upon the maximum of the run- time fine

Related: dec3pwrf Set fine power level
of observe channel

vdecpwrf Set fine power level
of first decoupler in
real- time

vdecpwrfstepsize Set step size for
real- time fine power
of first decoupler

vdec2pwrf Set fine power level
of second decoupler
in real- time

vdec2pwrfstepsize Set step size for
real- time fine power
of second decoupler

vdec3pwrfstepsize Set step size for
real- time fine power
of third decoupler

vdec4pwrf Set fine power level
of fourth decoupler
in real- time

vdec4pwrfstepsize Set step size for
real- time fine power
of fourth decoupler

vobspwrf Set fine power level
of observe channel
in real- time

vobspwrfstepsize Set step size for
real- time fine power
of observe channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 393

power statement dec3pwrf, which remains at
4095.0.

The new maximum is ampstepsize*4096 - 1. The
new maximum allows increased amplitude
resolution for a vamplitude step of 1. Values of
ampstepsize of 1,2,4,8 and 16 provide amplitude
resolution of 12, 13, 14 15 and 16 bits respectively,
when the transmitter hardware allows it.

The statement vdec3pwrfstepsize is executed at
run time and it must precede the use of vdec3pwrf
in the sequence. It can be used multiple times in
the sequence to reset the maximum.

Arguments: ampstepsize is a double with recommended whole
number values of 1,2,4,8 and 16 to obtain real- time
amplitude resolution of 12,13,14,15 and 16 bits,
when the transmitter hardware allows it.

vdec4pwrf Set fine power level of fourth decoupler in real-time

Syntax: vdec4pwrf(vamplitude)
codeint vamplitude /*real-time variable or
table to set fine power */

Related: dec3pwrf Set fine power level of
observe channel

vdecpwrf Set fine power level of first
decoupler in real- time

vdecpwrfstepsize Set step size for real- time
fine power of first
decoupler

vdec2pwrf Set fine power level of
second decoupler in
real- time

vdec2pwrfstepsize Set step size for real- time
fine power of second
decoupler

vdec3pwrf Set fine power level of
third decoupler in real- time

vdec4pwrf Set fine power level of
fourth decoupler in
real- time

vdec4pwrfstepsize Set step size for real- time
fine power of fourth
decoupler

vobspwrf Set fine power level of
observe channel in
real- time

vobspwrfstepsize Set step size for real- time
fine power of observe
channel

394 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Description: Set the fine power in real- time for the fourth
decoupler using vamplitude, a real- time variable or
a table. The default range of values of vamplitude
is 0 to 4095, similar to that of the dec4pwrf
statement. The default amplitude resolution for this
statement is 12- bits, because real- time integer and
tables may not have fractional values.

To use vdec4pwrf with 16- bit amplitude resolution,
include the statement vdec4pwrfstepsize(16);
before the use of vdec4pwrf to reset the range as 0
to 65536.

Arguments: vamplitude must be a real- time variable (v1 to v42,
etc), or a real- time table (t1 to t60) with values of
0 to 4095. The statement vdec4pwrfstepsize(N) (
N = 1,2,4,8 and 16) resets the maximum value of
vamplitude to N*4096 - 1 and sets the amplitude
resolution as 12, 13, 14, 15 or 16 bits respectively,
if the hardware allows it.

Related: dec4pwrf Set fine power level
of observe channel

vdecpwrf Set fine power level
of first decoupler in
real- time

vdecpwrfstepsize Set step size for
real- time fine power
of first decoupler

vdec2pwrf Set fine power level
of second decoupler
in real- time

vdec2pwrfstepsize Set step size for
real- time fine power
of second decoupler

vdec3pwrf Set fine power level
of third decoupler in
real- time

vdec3pwrfstepsize Set step size for
real- time fine power
of third decoupler

vdec4pwrfstepsize Set step size for
real- time fine power
of fourth decoupler

vobspwrf Set fine power level
of observe channel
in real- time

vobspwrfstepsize Set step size for
real- time fine power
of observe channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 395

vdec4pwrfstepsize Set step size for real-time fine power of fourth decoupler

Syntax: vdec4pwrfstepsize(ampstepsize)
double ampstepsize /*multiplier of the
fine-power maximum */

Description: Set the step size for the real- time fine power
statement vdec4pwrf. The argument ampstepsize
can have whole- number values of 1,2,4,8,and 16
and it increases the default maximum of
vamplitude for the real- time fine power statement
vdec4pwrf(vamplitude). This ampstepsize has no
effect upon the maximum of the run- time fine
power statement dec4pwrf, which remains at
4095.0.

The new maximum is ampstepsize*4096 - 1. The
new maximum allows increased amplitude
resolution for a vamplitude step of 1. Values of
ampstepsize of 1,2,4,8 and 16 provide amplitude
resolution of 12, 13, 14 15 and 16 bits respectively,
when the transmitter hardware allows it.

The statement vdec4pwrfstepsize is executed at
run time and it must precede the use of vdec4pwrf
in the sequence. It can be used multiple times in
the sequence to reset the maximum.

Arguments: ampstepsize is a double with recommended whole
number values of 1,2,4,8 and 16 to obtain real- time
amplitude resolution of 12,13,14,15 and 16 bits,
when the transmitter hardware allows it.

Related: dec4pwrf Set fine power level
of observe channel

vdecpwrf Set fine power level
of first decoupler in
real- time

vdecpwrfstepsize Set step size for
real- time fine power
of first decoupler

vdec2pwrf Set fine power level
of second decoupler
in real- time

vdec2pwrfstepsize Set step size for
real- time fine power
of second decoupler

vdec3pwrf Set fine power level
of third decoupler in
real- time

vdec3pwrfstepsize Set step size for
real- time fine power
of third decoupler

vdec4pwrf Set fine power level
of fourth decoupler
in real- time

396 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

vdelay Set delay with fixed timebase and real-time count

Syntax: vdelay(timebase,count)
int timebase; /* NSEC, USEC, MSEC, or
SEC */
codeint count; /* real-time variable for
count */

Description: Set a delay for a time period equal to the product
of the specified timebase and count. If timebase is
NSEC, the time base is a step of 12.5 ns and if
count has a real- time value less than than 4 (< 50.0
ns), vdelay is not executed.

Arguments: timebase is an integer constant set to one of four
defined time bases: NSEC (12.5 ns), USEC
(microseconds), MSEC (milliseconds), or
SEC (seconds).

count is a real- time variable (v1 to v42) or a
real- time table (t1 to t60).

Examples: vdelay(NSEC,v3);

vdelay_list Get delay value from delay list with real- time index.

Syntax: vdelay_list(list_number,vindex)

int list_number; /* same index as
create_delay_list */

codeint vindex; /* real time variable */

Description: Provides a means of indexing into previously
created delay lists using a real- time variable or a
table. The indexing into the list is from 0 to N–1,
where N is the number of items in the list. The
delay table has to have been created with the
create_delay_list statement.

Arguments: tlist_number is the number between 0 and 255
for each list. This number must match the
list_number used when creating the table.

vindex is a real- time variable (v1 to v14) or a
table (t1 to t60).

vobspwrf Set fine power level
of observe channel
in real- time

vobspwrfstepsize Set step size for
real- time fine power
of observe channel

Related: delay Execute time delay
hsdelay Execute time delay

with optional
homospoil pulse

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 397

Examples: pulsesequence()

{

int ndelay, listnum;

double delay[256];

…

/* compute values in delay array */

...

/* initialize delay list */

listnum =
create_delay_list(delay,ndelay,1);

...

vdelay_list(listnum,v5); /* get
element specified by v5 from delay list
“listnum” */

}

vobspwrf Set fine power level of observe channel in real-time

Syntax: vobspwrf(vamplitude)
codeint vamplitude /* a real-time variable
to set fine power */

Description: Set the fine power in real- time for the observe
channel using vamplitude, a real- time variable or a
table. The default range of values of vamplitude is
0 to 4095, similar to that of the obspwrf statement.
The default amplitude resolution for this statement
is 12- bits, because real- time integer and tables may
not have fractional values.

To use vobspwrf with 16- bit amplitude resolution,
include the statement vobspwrfstepsize(16);

Related: create_delay_list Create table of
delays

delay Delay for a specified
time

hsdelay Delay specified time
with possible
homospoil pulse

incdelay Real time
incremental delay

initdelay Initialize incremental
delay

vfreq Select frequency
from table

voffset Select frequency
offset from table

vdelay Set delay with fixed
timebase and
real- time count

398 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

before the use of vobspwrf to reset the range as
0 to 65536.

Arguments: vamplitude must be a real- time variable (v1 to v42,
etc), or a real- time table (t1 to t60) with values of
0 to 4095. The statement vobspwrfstepsize(N) (
N = 1,2,4,8 and 16) resets the maximum value of
vamplitude to
N*4096 - 1 and sets the amplitude resolution as 12,
13, 14, 15 or 16 bits respectively, if the hardware
allows it.

vobspwrfstepsize Set step size for real-time fine power of fourth decoupler

Syntax: vobspwrfstepsize(ampstepsize)
double ampstepsize /*multiplier of the
fine-power maximum */

Description: Set the step size for the real- time fine power
statement vobspwrf. The argument ampstepsize
can have whole- number values of 1,2,4,8,and 16
and it increases the default maximum of

Related: obspwrf Set fine power level
of observe channel

vdecpwrf Set fine power level
of first decoupler in
real- time

vdecpwrfstepsize Set step size for
real- time fine power
of first decoupler

vdec2pwrf Set fine power level
of second decoupler
in real- time

vdec2pwrfstepsize Set step size for
real- time fine power
of second decoupler

vdec3pwrf Set fine power level
of third decoupler in
real- time

vdec3pwrfstepsize Set step size for
real- time fine power
of third decoupler

vdec4pwrf Set fine power level
of fourth decoupler
in real- time

vdec4pwrfstepsize Set step size for
real- time fine power
of fourth decoupler

vobspwrfstepsize Set step size for
real- time fine power
of observe channel

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 399

vamplitude for the real- time fine power statement
vdec4pwrf(vamplitude). This ampstepsize has no
effect upon the maximum of the run- time fine
power statement dec4pwrf, which remains at
4095.0.

The new maximum is ampstepsize*4096 - 1. The
new maximum allows increased amplitude
resolution for a vamplitude step of 1. Values of
ampstepsize of 1,2,4,8 and 16 provide amplitude
resolution of 12, 13, 14 15 and 16 bits respectively,
when the transmitter hardware allows it.

The statement vobspwrfstepsize is executed at run
time and it must precede the use of vobspwrf in
the sequence. It can be used multiple times in the
sequence to reset the maximum.

Arguments: ampstepsize is a double with recommended whole
number values of 1,2,4,8 and 16 to obtain real- time
amplitude resolution of 12,13,14,15 and 16 bits,
when the transmitter hardware allows it.

Related: obspwrf Set fine power level
of observe channel

vdecpwrf Set fine power level
of first decoupler in
real- time

vdecpwrfstepsize Set step size for
real- time fine power
of first decoupler

vdec2pwrf Set fine power level
of second decoupler
in real- time

vdec2pwrfstepsize Set step size for
real- time fine power
of second decoupler

vdec3pwrf Set fine power level
of third decoupler in
real- time

vdec3pwrfstepsize Set step size for
real- time fine power
of third decoupler

vdec4pwrf Set fine power level
of fourth decoupler
in real- time

vdec4pwrfstepsize Set step size for
real- time fine power
of fourth decoupler

vobspwrf Set fine power level
of observe channel
in real- time

400 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

W

warn_message Send warning message to VnmrJ

Syntax: warn_message(message, varnames)

char *message /* a formatted string containing the
message */
varnames /* char, int or double, used in message */

Description: Send a formatted warning message to VnmrJ and
cause a beep. The formatting is similar to the C
printf statement.

writeMRIUserByte Set user byte on MRI User panel

Syntax: writeMRIUserByte(a)
codeint a; /* real-time variable for
byte */

Description: Write the eight output lines from the 15- pin
D- connector User Out on the MRI GUser panel on
the back of the console from the real- time variable
a. The write is performed synchronously with the
experiment.

Arguments: The argument is a real- time variable from where
the byte is written.

Examples: writeMRIUserByte(v2);

warn_message Send warning message to VnmrJ
writeMRIUserByte Set user byte on the MRI User Panel

Related: abort_message Abort PSG at
run- time and send
message to VnmrJ

psg_abort Abort PSG Process
text_error Send error message

to VnmrJ
text_message Send message to

VnmrJ

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 401

X

xgate Gate pulse sequence from external tachometer signal

Syntax: xgate(events)
double events; /* number of external
events */

Description: Halt all channels of a pulse sequence. The pulse
sequence continues after events external events
have occurred.

Arguments: events is the number of external events.
Examples: xgate(2.0);

xmtroff Turn off observe channel

Syntax: xmtroff()

Description: Explicitly gate off the observe transmitter outside
of a pulse. Amplifier blanking state is unchanged.

xmtron Turn on observe channel

Syntax: xmtron()

Description: Explicitly gate on the observe channel in the pulse
sequence outside of a pulse. Amplifier blanking
state is unchanged. The associated amplifier must

xgate Gate pulse sequence from external tachometer signal
xmtroff Turn off observe channel
xmtron Turn on observe channel
xmtrphase Set small-angle phase of observe channel

Related: rotorperiod Obtain period of
external tachometer
signal

rotorsync Execute time delay
based on external
tachometer signal

Related: decoff Turn off first
decoupler

dec2off Turn off second
decoupler

dec3off Turn off third
decoupler

dec4off Turn off fourth
decoupler

xmtron Turn on observe
channel

402 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

be previously unblanked with obsunblank at least
2.0 µs before xmtron. Follow xmtron with a delay,
xmtroff, and an optional obsblank.

xmtrphase Set small-angle phase of observe channel

Syntax: xmtrphase(multiplier)
codeint multiplier; /* real-time
phase-step multiplier */

Description: Set the phase as a product of multiplier and a
phase stepsize, which is set in degrees by the
obsstepsize statement. If obsstepsize has not been
used, the default stepsize is 90°.

The xmtrphase statement sets the total phase as a
sum of a quadrature part, a multiple of 90°, and a
small- angle part, 0° to 90°. The small- angle phase
of VNMRS has a phase resolution of 360.0/8192 or
about 0.044° and the small- angle phase is set to the
nearest step.

The xmtrphase statement overrides the quadrature
part of the phase, set by any previous txphase
statement. The txphase statement overrides only
the quadrature part of the phase. Use
xmtrphase(zero) to remove small- angle phase and
return to only quadrature phases.

You should be aware that rgpulse can be set only
in the quadrature phase. Set a small- angle phase
cycle with xmtrphase before the pulse and use zero
as the quadrature- phase multiplier for the pulse.

Arguments: multiplier is a small- angle phaseshift multiplier
for the first decoupler. The value must be a
real- time variable (v1 to v42, oph, etc), a real- time
constant (zero, one, etc) or a real- time table (t1 to
t60).

Examples: xmtrphase(v1);

Related: decon Turn on first
decoupler

dec2on Turn on second
decoupler

dec3on Turn on third
decoupler

dec4on Turn on fourth
decoupler

xmtroff Turn off observe
channel

Related: dcplrphase Set small- angle
phase of first
decoupler

Pulse Sequence Statement Reference 3

VnmrJ 4 User Programming 403

dcplr2phase Set small- angle
phase of second
decoupler

dcplr3phase Set small- angle
phase of third
decoupler

dcplr4phase Set small- angle
phase of fourth
decoupler

obsstepsize Set small- angle
phase stepsize of
observe channel

txphase Set quadrature phase
of observe channel

404 VnmrJ 4 User Programming

3 Pulse Sequence Statement Reference

Z

zero_all_gradients Zero gradient DAC level for all axes

Syntax: zero_all_gradients()

Description: Set the gradients of the X, Y, and Z axes to zero.
Examples: magradient(3.0);

delay(0.001);
zero_all_gradients();

zgradpulse Create a gradient pulse on the z channel

Syntax: zgradpulse(daclvl,width)
double daclvl; /* gradient amplitude,
DAC units */
double width; /* duration of gradient
pulse, seconds */

Description: Create a gradient pulse on the Z channel with an
amplitude of daclvl, in DAC units and a duration
width, in seconds. The gradient amplitude is reset
to 0 at the end of the pulse.The gradalt parameter
can be used to multiply the amplitude on
alternative scans.

Arguments: daclvl is the gradient amplitude in DAC units,
- 32767 to 32767.

width is the duration of the gradient pulse, in
seconds.

Examples: zgradpulse(1234.0,d2);

zero_all_gradients Zero gradient DAC level for all axes
zgradpulse Perform gradient pulse on z axis

Related: mashapedgradient Perform three- axis shaped
gradient at magic angle

obl_shaped3gradien
t

Perform three- axis oblique
shaped gradient, three
patterns

pe3_shaped3gradien
t

Perform oblique gradient,
one pattern, phase encode
three axes

phase_encode3oblsh
a pedgradient

Perform general oblique
shaped gradient, phase
encode three axes

Related: rgradient Set DAC level of any one
gradient axis

shapedgradient Perform shaped gradient
pulse on any one axis

405

Agilent VnmrJ 4 User Programming
Reference Guide

Agilent Technologies

4
Linux Level Programming

Linux and VnmrJ 406

Linux Reference Guide 407

Linux Commands Accessible from VnmrJ 411

Background VNMR 412

Shell Programming 414

Several books have been written on every aspect and level of
UNIX and much of it also applies to Linux, the open- source
version of UNIX. This manual does not replace that material.

406 VnmrJ 4 User Programming

4 Linux Level Programming

Linux and VnmrJ

The VnmrJ software is a complete NMR work environment
and VnmrJ users do not need to work directly with the
operating system aside from login, logout, and starting
VnmrJ. The operating system runs the workstation at all
times. The user starts VnmrJ by clicking on the VnmrJ icon
after completing the login procedure. Operators assigned to a
Walkup account remain within the VnmrJ environment and
use the VnmrJ switch operator function and login screen.

Linux provides "tools" to perform almost anything short of
complex mathematical manipulations, search through your
files, sort line lists, report who is on the system, run a
program unattended, and more. Use the online help provided
with Linux and other published third- party references to
learn about these tools.

Linux Level Programming 4

VnmrJ 4 User Programming 407

Linux Reference Guide

This section is a brief overview of the operating system and
its associated commands.

Command Entry

File Names

File Handling Commands

Directory Names

Directory Handling Commands

Text Commands

Other Commands

Special Characters

This is a brie<XREF>f overview of the operating system and
its associated commands.

Command entry

Single command entry commandname

Command names Generally lowercase, case-sensitive

Multiple command separator ; (semicolon) or new line

Arguments commandname arg1 arg2

408 VnmrJ 4 User Programming

4 Linux Level Programming

File names

File handling commands

Directory names

Directory handling commands

Typical (shorthand names usually used) /vnmr/fidlib/fid1d

Level separator / (forward slash)

Individual filenames Any number of characters (256
unique)

Characters in filenames Underline, period often used

First character in filename First character unrestricted

Delete (unlink) a file(s) rm filenames

Copy a file cp filename newfilename

Rename a file mv filename newfilename

Make an alias (link) ln target linkname

Sort files sort filenames

Tape backup tar

Package files zip

Home directory for each user Directory assigned by the administrator

Working directory Current directory the user is in

Shorthand for current directory . (single period)

Shorthand for
parent directory

.. (two periods)

Shorthand for home directory ~ (tilde character)

Root directory / (forward slash)

Create (or make) a directory mkdir directoryname

Rename a directory mv dirname newdirname

Remove an empty directory rmdir directoryname

Delete directory and all files in it rm –r directoryname

Linux Level Programming 4

VnmrJ 4 User Programming 409

Text commands

Other commands

List files in a directory, short list ls directoryname

List files in a directory, long list ls –l directoryname

Copy file(s) into a directory cp filenames directoryname

Move file(s) into a directory mv filenames directoryname

Show current directory pwd

Change current directory cd newdirectoryname

Edit a text file using vi editor vi filename

Edit a text file using ed editor ed filename

Edit a text file using textedit editor textedit filename

Display first part of a file head filename

Display last part of a file tail filename

Concatenate and display files cat filenames

Compare two files cmp filename1 filename2

Compare two files deferentially diff filename1 filename2

Print file(s) on line printer lp filenames

Search file(s) for a pattern grep expression filenames

Find spelling errors spell filename

Pattern scanning and processing awk pattern filename

Change file protection mode chmod newmode filename

Display current date and time date

Summarize disk usage du –k

Report free disk space df –k filesystem

Kill a background process kill process-id

Sign on to system login username

Send mail to other users mail

Print out UNIX manual entry man commandname

Process status ps

410 VnmrJ 4 User Programming

4 Linux Level Programming

Special characters

Convert quantities to another scale units

Who is on the system w

System identification uname -a

Send output into named file > filename

Append output into named file >> filename

Take input from named file < filename

Send output from first command to input of second
command (pipe)

| (vertical bar)

Wildcard character for a single character in filename
operations

?

Wildcard character for multiple characters in filename
operations

*

Run program in background &

Abort the current process Control-C

Logout or
end of file

Control-D

Linux Level Programming 4

VnmrJ 4 User Programming 411

Linux Commands Accessible from VnmrJ

Several commands are accessible directly from VnmrJ,
including the vi, edit, shell, shelli, and w commands.

Opening a text editor from VnmrJ

Entering vi(file) or edit(file) from VnmrJ opens a text
editor screen for editing the name of the file given in the
argument (e.g., vi('myfile')). Exiting from the editor closes
the editing window.

A useful Linux and UNIX editing program is vi. The UINIX
text editors, ed and textedit, and the Linux gedit that are
easier to learn than vi, but vi is the a widely used Linux
and UNIX text editor because of its features. A text editor is
necessary to prepare or edit text files, such as macros,
menus, and pulse sequences (short text files such as those
used to annotate spectra are usually edited in simpler ways).

Opening a shell from VnmrJ

Entering the shell command from VnmrJ without any
argument opens a normal Linux or UNIX shell. Entering
shell with the syntax:

shell(command) <:$var1,$var2,...>

executes the operating system command given, displays any
text lines generated, and returns control to VnmrJ when
finished. The results of the command line are returned to
the variables $var1, $var2... if return arguments are present.
Each variable receives a single display line.

shell calls involving pipes (|) or input redirection (<)
require either an extra pair of parentheses or the addition
of; cat to the shell command string, for example:

shell('(ls –t|grep May)'):$list

shell('ls –t|grep May; cat'):$list

To display information about who is on to the operating
system, enter the w command from VnmrJ.

412 VnmrJ 4 User Programming

4 Linux Level Programming

Background VNMR

This section describes running VNMR commands and
processing in the background.

Running VNMR Command as a Linux background task

VNMR commands can be executed as a Linux background
task by using the command

Vnmr ?mback <?n#> command _string <&>

where -mback is a keyword (entered exactly as shown), -n#
defines that processing will occur in experiment # (e.g., -n2
sets experiment 2), and command _string is a VNMR
command or macro. If -n# is omitted, processing occurs in
experiment 1. If more than one command is to be executed,
place double quote marks around the command string, e.g.

"printon dg printoff"

Linux background operation (&) is possible, as in Vnmr
–mback wft2da &. Use of redirection (> or >>) with
background processing is recommended:

Vnmr -mback ?n3 wft2da > vnmroutput &

The vbg shell script is also available to run VNMR
processing in the background.

All text output, both normal text window output and the
typical two- letter prompts that appear in the upper right
("FT", "PH", etc.), are directed to the UNIX output window.

Note the following characteristics of the Vnmr command:

• Full multi- user protection is implemented. If user vnmr1
is logged in and using experiment 1, and another person
logs in as vnmr1 from another terminal and tries to use
the background Vnmr, the second vnmr1 receives the
message "experiment 1 locked" if that person tries to
use experiment 1. The second user can, however, use
other experiments.

• Pressing Control- C does not work. Typing the command
shown cannot be aborted with Control- C.

• Operation within VNMR is possible using shell.

shell ('Vnmr -mback -n2 wftda')

• Plotting is possible.

Vnmr -mback -n3 "pl pscale pap page"

Linux Level Programming 4

VnmrJ 4 User Programming 413

• Printing is possible.

Vnmr -mback "printon dg printoff"

Running VNMR processing in the background

The vbg shell script runs VNMR processing in the
background. The main requirements are that vbg must be
run from within a shell and that no foreground or other
background processes can be active in the designated
experiment. Open a terminal window and start vbg in the
following form:

vbg # command_string <prefix>

where # is the number of an experiment (from 1 to 9) in the
user's directory in which the background processing is to
take place, command_string is one or more VNMR
commands and macros to be executed in the background
(double quotes surrounding the string are mandatory), and
prefix is the name of the log file, making the full log file
name prefix_bgf.log (e.g., to perform background plotting
from experiment 3, enter vbg 3 "vsadj pl pscale pap
page" plotlog).

The default log file name is #_bgf.log, where # is the
experiment number. The log file is placed in the experiment
in which the background processing takes place. Refer to the
Command and Parameter Reference for more information
on vbg.

414 VnmrJ 4 User Programming

4 Linux Level Programming

Shell Programming

The shell variables execute commands given either from a
terminal or those contained in a file. Files containing
commands and control flow notation, called shell scripts,
can be created, allowing users to build their own commands.
This section provides a short overview of such programming;
refer to the Linux and UNIX literature for more information.

Shell variables and control formats

As a programming language, the shell provides string- valued
variables: $1, $2,.... The number of variables is available as
$# and the file being executed is available as $0. Control
flow is provided by special notation, including if, case,
while, and for. The following format is used:

Shell scripts

The following shows two ways to write a shell script for the
same command. In both scripts, the command name lower is
selected by the user and the intent of the command is to
convert a file to lower case, but the scripts differ in features.

The first script:

: lower --- command to convert a file to lower case
: usage lower filename
: output filename.lower
tr '[A-Z]' '[a-z]' < $1 > $1.lower

The second script:

: lower --- a command to convert a file to lower case
: usage lower filename or lower inputfile outputfile
: output filename.lower or output file
case $# in
 1) tr '[A-Z]' '[a-z]' <$1 > $1.lower;;
 2) tr '[A-Z]' '[a-z]' <$1 > $2;;
 *) echo "Usage: lower filename or lower \
 inputfile outputfile";;
esac

In the first script, only one form of input is allowed. In the

if command-list (not Boolean)
then command-list
else command-list
fi

case word in
pattern) command-list;;
...
esac

while command-list
do command-list
done

for name (in w1 w2)
do command-list
done

Linux Level Programming 4

VnmrJ 4 User Programming 415

second script, not only is a second form of input allowed,
but a prompt explaining how to use lower appears if the
user enters lower without any arguments. Notice that in
both scripts, a colon is used to identify lines containing
comments (and that each script is carefully commented).

416 VnmrJ 4 User Programming

4 Linux Level Programming

Data backup under Linux

This section describes backup of data using Linux.

General considerations

Data backup is an important task that should not be
underestimated. Although modern computer hard- and
software should be, in principle, quite robust against
“environmental” risks, the possibility remains that the
spectrometer host (and/or data station computers) can still
be affected by power failures, unauthorized intruders
(“hackers”) etc.

Some of these risks can and should be minimized wherever
possible: If the NMR lab is situated in an environment where
power outages occur rather frequently (more than once per
year), the purchase of an uninterruptible power supply
(UPS) should be considered, at least for the spectrometer
host computer. If the network the spectrometer host is
connected to is inherently not very safe (no firewall towards
the external internet, for example), setting up the personal
Linux firewall may be advisable.

The presence of a data backup can tremendously help in
such cases. It should therefore be considered to back up the
following data structures, with descending order of
importance:

1 NMR data directories

2 Application directories (these often contain
personalized settings and customized macros,
sequences etc.) should be backed up at least once using
CD/DVD, for example

3 Personal home directories of VnmrJ users
(“/home/vnmr1”, for example) can be re- created quite
easily after re- installing VnmrJ, but any personal
settings or customizations would be lost. Therefore,
home directories should be backed up at least once,
after personalization and customization, using CD/DVD
for example. Running instead a continuous, automatic
backup ensures being able to get back to the point of
work where it was stopped.

4 The VnmrJ home directory (/vnmr) should not hold, in
principle, any personalized data apart from system
packages like Biopack, Solidspack or VnmrJ patches
that cannot be re- installed rather easily.

Linux Level Programming 4

VnmrJ 4 User Programming 417

5 The Red Hat operating system (/usr, /dev etc.) itself is
considerably more difficult to back up into a state
which enables the user to functionally re- create the
operating system. Although such (typically stand- alone,
bootable CDs/DVDs) exist to do this, it should not be
covered here. A recovery Red Hat DVD is supplied
together with the Dell Linux computer that enables the
re- installation of the operating system. See also the
“Linux installation for VnmrJ” manual.

One of the safest ways to back up data – setting up a RAID
1 (disk mirror with two disks, possible as “software RAID”
without special controller) or RAID 5 (redundant system
with minimum 3 disks, usually requires special controller or
BIOS) requires doing so before Linux installation and shall
not be covered in this guide.

In the following sections, three typical backup mechanisms
shall be covered which are supported by Red Hat Linux and
VnmrJ: Backup on CD/DVD media, data mirroring using
VnmrJ tools and backup using rsync on either local or
remote filesystems.

Data backup on CDs/DVDs

The probably least demanding and cheapest way to do data
backup is to use DVD- R media. CD- R media are, although
they could be used as as well, in principle, are not very
convenient for NMR data due to their rather limited capacity
of approx. 700 MB versus approx. 4.5 GB of typical DVDs.

Advantages: Using DVDs for data backup requires no hard-
or software setup, all hard- and software required is already
installed, Backups can easily be stored in a different place
than the computer that is to be backed up (in case of fire,
theft concerns etc.).

Disadvantages: Backup via DVDs cannot be automated; it
always requires human intervention to start it and to insert
multiple DVDs if necessary. The process is also also rather
slow (approx. 10 min to burn a 4.5 GB DVD). Hence, it
should preferentially be used to back up smaller amounts of
NMR data and/or the user home directories from time to
time or as an occasional redundancy backup.

Your Dell spectrometer host is already equipped with a DVD
burner and Red Hat Enterprise Linux contains a convenient
DVD burning tool “K3b”. To launch the program, select “K3b”
from the Linux Applications ? Sound & Video menu.

418 VnmrJ 4 User Programming

4 Linux Level Programming

K3b is quite self- explanatory: After launching it for the first
time, it may ask for confirmation of the DVD burner
hardware (click “OK” here). After that, select a “New data
CD” or “New data DVD” project:

Now drag- n- drop the directories to be backed up into the
window and click the “Burn” button on the centre left of the
window (alternatively, select “Project Burn” from the menu
or press Ctrl- B.

Linux Level Programming 4

VnmrJ 4 User Programming 419

On the following popup window you can choose to either
burn a CD/DVD on the fly, keep or remove the ISO image or
just create an ISO image without actually burning a CD/DVD
(in the latter case, just click “Save” instead of “Burn”).

Installation of a second hard disk

One of the cheapest and fastest ways to backup data besides
using CDs or DVDs is to regularly copy the data on a second
hard disk. This disk can be either attached to an external
USB port or mounted inside the spectrometer host computer
and attached to a free serial ATA (SATA) connector.

In principle, large, current- generation USB sticks could also
be used as data backup, but you should take note that the
FLASH chip inside USB sticks can only be overwritten
approx. 10,000 times. This property makes USB memory
sticks not very safe as a backup medium and hence they
should only be used for occasional data transfer.

External USB hard disk:

Attach the external hard disk to one of the external USB
connectors, provide power to the harddrive and switch it on.
The hard disk should be automatically recognized, just like a
USB memory stick.

Typically, USB devices show up in the /media directory. It

420 VnmrJ 4 User Programming

4 Linux Level Programming

may be handy to create a (soft) link to that directory so that
the crontab entry/VnmrJ preferences don’t need to be
changed when changing the backup drive - in this case,
don’t create a /backup directory but type instead:

ln –sf /media/USB_DRIVE_NAME /backup

Internal SATA hard disk:

1 Obtain a SATA hard disk and matching SATA data
transfer cable (at least for Dell 390, T3400 and T3500
computers, the connector plug on the hard disk side
must have a 90 degree angle, otherwise the computer’s
cover cannot be closed after mounting the hard disk).

2 Shut the computer down and power it off.

3 Mount the hard disk using the mounting bracket inside
the computer and attach power and SATA cables to the
drive. Connect the SATA cable to an unused SATA
channel.

4 Power the computer up and press F2 to enter the BIOS
setup.

5 Go to the “Drives” menu and switch on the SATA
channel to which you connected the SATA cable (for
example SATA- 1). Save the BIOS settings and reboot the
computer.

Figure 3 BIOS Drives screen of a Dell 390N

Linux Level Programming 4

VnmrJ 4 User Programming 421

Figure 4 BIOS Drives screen of a Dell T3500

6 Check if the second hard disk is detected by Linux: Open
the hardware browser by selecting “System ?
Administration ? Hardware” from the Linux menu. Select
“Hard drives”. The second hard disk should typically be
recognized as device /dev/sdb (the first hard disk is
/dev/sda). The following screenshot shows a second drive
/dev/sdb that had already been formatted to contain
three partitions (if the drive does not contain any
partitions yet, it may appear in the “Disk information”
list but not graphically on top):

7 Format the disk. Enter:

422 VnmrJ 4 User Programming

4 Linux Level Programming

fdisk /dev/sdb

Note: Make sure you do NOT type here the name of the
system hard disk – typically “/dev/sda” as you can erase
your main hard disk! If you are unsure about this
operation, seek advice from Agilent.

• Type “p” to show the current partition table (type “m”
to see all commands)

• If any partitions are present on the second hard disk,
delete them with “d”

• Now create a new primary partition (typically, fill the
backup hard disk with a single partition). Enter “n” for
a new partition, followed by “p” for a primary
partition, “1” for the first partition. Choose the size in
cylinders (typically, hit “Return” to fill the entire disk).

• Enter “p” again to verify the partition(s) has/have been
created as desired. If not, delete the partition(s) and
create afresh.

Note: all changes so far are done in memory – only the
next step actually writes them to the hard disk header.

• Enter “w” to write this partition table to disk and exit.

8 Now create a filesystem on the new partition(s). Type,
for example:

mkfs.ext3 /dev/sdb1

Note: This may take a few minutes.

9 The new partition should be mounted on system bootup.
To achieve this, enter the partition into the filesystem
table /etc/fstab. Open the file with a text editor like
“gedit”:

gedit /etc/fstab

Add a new line that reads like this (adapt for your
requirements):

/dev/sdb1/backupext3defaults 0 0

10 If it doesn’t exist yet, create a directory that will be the
mount point for the hard disk, like

mkdir /backup

11 You can now mount the new partition without having to
reboot the computer (at next reboot, the partition will be
mounted automatically). Type:

mount /backup

Linux Level Programming 4

VnmrJ 4 User Programming 423

The partition should show up correctly now when
checking the filesystems. To check, type:

df –h

to display the filesystems in human- readable format (MB,
GB etc).

Your hard disk should now be set up to be used as a backup
medium.

Data mirroring using VnmrJ tools

VnmrJ 3 contains a functionality to routinely mirror NMR
data to a second harddrive or remotely mounted filesystem.
It is activated from the VnmrJ Preferences (under the Edit
menu), Data Mirror tab. Data backup using mirroring from
VnmrJ requires the presence (and setup) of either a second
backup hard disk or a mounted remote filesystem on
another computer. The data will be backed up in a
synchronous way – each time an FID is saved on disk, it will
be saved (mirrored) in the second location as well. Please
refer also to the “Automation User Guide”, chapter 9.5.

Advantages: Easy to set up from VnmrJ itself.

Disadvantages: In the case of a network mounted filesystem,
if the network connection should be lost before or during
data transfer, all data attempted to mirror will not be
transferred and will be missing from the backup. In such a
case the missing data will have to be copied over by hand as
soon as the network is up again. Hence, this type of data
mirroring should only be used if the “uptime” of the network
can be guaranteed to a very high degree or if the target
medium is a second harddrive inside or attached to the
spectrometer host.

To use data mirroring from VnmrJ, first install and/or setup
your backup medium that you want to mirror the data to.
Please refer to section 6.6.2 on how to do this. Then use the
VnmrJ Preferences to set up the data mirroring:

424 VnmrJ 4 User Programming

4 Linux Level Programming

1 Open the Preferences window from the Edit ? Preferences
menu (see also the “Automation” manual).

2 Select the “DataMirror” tab.

3 If not done already, switch on data mirroring by selecting
the “DataMirror Preferences” checkbox on top.

4 Tick the checkbox of all types of data that shall be
mirrored: FIDs, PDFs etc. File compression via ZIP can
also be selected by the “Zip it?” checkboxes on the right.

5 For every data type, enter a save template, that includes
the path to the backup medium. The mirror template can
be similar to the normal data save template (as set up on
the “Templates” tab) like, in this example,

/backup/FIDs/$operator$/$samplename$/$pslabel$_%D
AY%%MOC%%YR%_

(or whatever your local templates look like) but also
could be set up completely differently from the data save
templates. Refer to the autoname entry in the Command
& Parameter Reference manual or type

man(’autoname’)

in the VnmrJ command line to see details on template
usage.

Automatic data backup using rsync

This is a description on how to set up automated file saving

Linux Level Programming 4

VnmrJ 4 User Programming 425

between two hard disks or Linux computers using remote
synchronization – rsync. One hard disk or computer is the
client, the other acts as a (file) server.

Advantages: Safe, works even if network connection is
intermittent. Fast. Data transfer can be piped through secure
shell (SSH) and therefore encrypted. Can be set up to run at
specific intervals or dates.

Disadvantages: Requires special setup described here.

rsync compares the date stamps of all files in two
directories – the source and the target directory. If the
source directory contains newer files (like recently
touched/updated files) than the target directory, only those
files will be copied, preserving (in “archive mode”) all file
settings like owner, group and date.

For checking the date of the relevant files, rsync taps into
the internal filesystem table which already contains this
information. Hence, rsync runs very fast and uses less
resources than typical FTP scripts that have to find out this
information actively at every runtime. Typically, rsync is run
via a crontab script once or several times per day (like once
per hour or even more often).

Because of its “passive” behavior, rsync will still work if, for
example, a mounted drive on another network computer is
unavailable for a certain time (network down): If the drive
cannot be found, no data are copied. As soon as the network
is available again, more “new” data are found and the
complete backlog is copied to the backup drive without
further intervention. Because of this intrinsically higher data
safety rsync is normally preferable over “simple” data
mirroring (see section 6.6.3), but it requires more steps to
set it up, as described in this chapter.

A prerequisite for rsync to work is that the rsync server
daemon is active on the computer that actively sends or
fetches the data. This can be checked by going to the System
> Administration > Server Settings > Services menu.

With RedHat Linux versions before 5.3, the rsync service is
found in the main list whereas with RHEL 5.3, it is under
the “On Demand Services” tab:

426 VnmrJ 4 User Programming

4 Linux Level Programming

If the service is not active yet, click the checkbox and press
“Save”.

With RedHat versions before 5.3, it is also necessary to
restart the xinet daemon if you newly added rsync to the
running servers. To restart xinet, select it from the list and
click the “Restart” button. With later RHEL versions this is
not required as rsync runs on demand.

Backup on a second hard disk

Please see section 6.6.2 on how to prepare a second hard
disk for backup use. After preparation, the data backup can
be set up:

Create a cron job doing an rsync call every few minutes
(rsync is very fast from hard disk to hard disk and can run
e.g. all 5- 10 minutes). Add a line to the file /etc/crontab
reading like this (in this example, VnmrJ was set up such
that the NMR data is written to /home/data):

*/5 * * * * user rsync -aqu /home/data/ /backup

a b c d e f g h i j

The arguments in the crontab file are:

a Minute (0- 59) – “5” would result in the command being
executed at every 5th minute of every hour, “*/5” would
result in command execution every five minutes.

Linux Level Programming 4

VnmrJ 4 User Programming 427

b Hour (0- 23) – “*” means execution at every hour of the
day, */5 would result in command execution every five
hours.

c Day of the month (1- 31) – “*” means execution at
every day of the month, */5 would result in command
execution every five days.

d Month of the year – “*” means execution at every
month of the year.

e Day of the week (0- 6, Sunday=0) – “*” means execution
at every day of the week

f User as who the command should be executed (for
example “root” or “vnmr1”)

g Command to be executed

h Command arguments (here, “a” = archive, “q” = quiet,
“u” = …

i Directory to be backed up (note the trailing “/”- this is
important if only the content of the /home/data directory
shall be copied to /backup – not the directory “data”
itself)

j Target directory (can have a trailing “/”, but does not
have to)

The moment the new entry is saved to /etc/crontab, it will
start executing. If “*/5” is selected for the minutes, for
example, data backup should start five minutes later.

Another possibility to create crontab jobs is by typing

crontab –e

in a terminal shell. This will create a personal crontab
(instead of a system wide crontab when editing
/etc/crontab). In this case, the “user” entry is not required
as the user who typed “crontab –e” is the user will be
executing the command contained in the crontab entry.

To check whether a personal crontab is already running,
type

crontab –l

See also man(crontab) for more options.

Note: Make sure the last item in the crontab line (here
“/backup”) does NOT end with an (accidentally added, for
example by copy- n- paste) empty string! The rsync command

428 VnmrJ 4 User Programming

4 Linux Level Programming

will not be executed in this case.

Backup on a remote mounted filesystem

Data backup from a spectrometer host to a remote mounted
filesystem can be done in two ways:

Option A: The spectrometer host copies “pushes” the data to
the backup server

Option B: The backup server copies “pulls” the data from the
spectrometer host

Option A

This setup allows backing up data from the spectrometer
host to a file server which exports one of its hard
disks/partitions to the network via NFS:

1 Log in as root user on the spectrometer host and create
a new directory that will be used as mount point for the
backup harddrive, for example:

mkdir /backup

2 Edit the file /etc/fstab to create a new entry for the
remote mount point. Add a new line similar to this
example:

backup_server:/target_directory /backup nfs
defaults 0 0

3 Try out if you can already mount it (the entry in
/etc/fstab will make sure it is mounted upon every
reboot):

mount /backup

If it succeeds, continue with step 4)

If it fails, maybe the target directory hasn’t been
exported properly. Here is what needs to be done to
export a directory via NFS if the remote computer is a
(Red Hat) Linux machine as well:

a On the (Red Hat) Linux backup server, log in as root
and open the System > Administration > Server
Settings > Services menu

b Check if the “nfs” service is running. If not, select the
checkbox and click “Start” and “Save”:

Linux Level Programming 4

VnmrJ 4 User Programming 429

c Now open the System > Administration > Server
Settings > NFS:

430 VnmrJ 4 User Programming

4 Linux Level Programming

d Click “Add” to export a new directory via NFS.

e Select the Directory to be exported

f f read/write access shall be restricted to a few
(spectrometer) hosts, enter their names or IP addresses
into the “Host(s)” field.

g Select “Read/Write” permissions.

h If you want all other network computers to have
Read- only access, add a new NFS entry for the same
directory but with a “*” in the “Host(s)” field and
selecting “Read- only” permissions.

4 4)Create a cron job doing an rsync call every few
minutes. Add a line to the file /etc/crontab reading
something like this (see section “Backup to a second
hard disk” above for a detailed description of the crontab
file, VnmrJ was set up such that the NMR data is written
to /home/data):

*/5 * * * * user rsync -aqu /home/data/ /backup

Note: Make sure the last item in the crontab line (here
“/backup”) does NOT end with an (accidentally added, for
example by copy- n- paste) empty string! The rsync
command will not be executed in this case.

Linux Level Programming 4

VnmrJ 4 User Programming 431

Option B

The second setup backs up data by “pulling” them from the
spectrometer host to the file server. Now the spectrometer
host has to export its hard disk/partitions to the network
via NFS:

1 Log in as root user on the backup server and create a
new directory that will be used as mount point for the
backup harddrive, for example:

mkdir /backup

2 Create a directory where the backup should be stored,
for example “/home/backup/400MR”:

mkdir /home/backup/400MR

3 Edit the file /etc/fstab to create a new entry for the
remote mount point. Add a new line similar to this
example:

Spectrometer_host:/source_directory /backup nfs
defaults 0 0

In the present example, the entry could therefore be:

400MR:/home/data /backup nfs defaults 0 0

4 Try out if you can already mount it (the entry in
/etc/fstab will make sure it is mounted upon every
reboot):

mount /backup

If it succeeds, continue with step 5)

432 VnmrJ 4 User Programming

4 Linux Level Programming

If it fails, maybe the target directory hasn’t been
exported properly. Here is what needs to be done to
export a directory via NFS if the remote computer is a
(Red Hat) Linux machine as well (for screenshots see
part A) above):

a On the (Red Hat) Linux backup server, open the
System > Administration > Server Settings > Services
menu

b Check if the “nfs” service is running. If not, select the
checkbox and hit “Start” and “Save”:

c Now open the System > Administration > Server
Settings > NFS.

d Click “Add” to export a new directory via NFS.

e Select the Directory to be exported

f If read/write access shall be restricted to a few
(spectrometer) hosts, enter their names or IP addresses
into the “Host(s)” field.

g Select “Read/Write” permissions.

h If you want all other network computers to have
Read- only access, add a new NFS entry for the same
directory but with a “*” in the “Host(s)” field and
selecting “Read- only” permissions.

5 Create a cron job doing an rsync call every few minutes.
Add a line to the file /etc/crontab reading something like
this (see section “Backup to a second hard disk” above
for a detailed description of the crontab file). Now
“/backup” is the source and “/home/backup/400MR” the
target directory:

*/5 * * * * user rsync -aqu /backup/ /home/backup/400MR

The moment the new entry is saved to /etc/crontab, it
will start executing. If “*/5” is selected for the minutes,
for example, data backup should start five minutes later.

Backup on a remote computer via Secure Shell (ssh)

In certain situations (mostly because of safety concerns,
firewalls etc.), backup server access cannot be granted
directly via NFS but data traffic and user login has to be
encrypted. This can be achieved using Secure Shell (SSH).

As SSH requires user login, each operation would require
typing the password, making an automated backup
essentially impossible. To still allow a safe SSH login without
having to enter the password, a highly encrypted

Linux Level Programming 4

VnmrJ 4 User Programming 433

private/public key pair can be generated that replaces the
password.

Data backup from a spectrometer host to a remote mounted
filesystem can again be done in two ways, only it is done via
SSH:

Option A: The spectrometer host copies “pushes” the data to
the backup server

Option B: The backup server copies “pulls” the data from the
spectrometer host

Which of the two options should be used is usually
determined by the question whether the rsync service is
available on the backup server or not. Often, SSH is possible
even on Microsoft Windows- based machines while both SSH
and rsync are typically available on Unix- based servers only.

Option A

This setup allows backing up data from the spectrometer
host to a remote file server by “pushing” the data via rsync
and SSH. The following recipe only works if the file server is
also a Linux or Unix computer. In this example, the user
“vnmr1” shall back up the content of /home/data on the
NMR spectrometer host “400MR” to the “/home/backup”
directory of the backup server “NMRbackup”.

1 Log in as root on the spectrometer host (“400MR”).

2 Make sure both rsync and ssh are enabled by checking
the "System > Administration > Server Settings >
Services" tool: Choose "rsync" and "ssh", save (start the
daemons if necessary) and exit.

3 Check if SSH and rsync have been enabled on the remote
backup server (this typically has to be checked with the
local IT department, a user login also must be provided –
let’s assume a username “backupuser”).

4 Generate a private/public key pair on the NMR host:
Type:

mkdir /home/nmruser/cron
cd /home/nmruser/cron
ssh-keygen -t dsa -b 2048 -f nmrhost_rsync_key

(“nmruser” would here be “vnmr1”, while “nmrhost” is the
network name of the NMR spectrometer host, here, “400MR”)

The output should be:

434 VnmrJ 4 User Programming

4 Linux Level Programming

Generating public/private dsa key pair.
Enter passphrase ...: (press enter here)
Enter same passphrase again...: (press enter again)

5 Now copy the public key to the backup server:
scp nmrhost_rsync_key.pub serveruser@serverhost:/home/
serveruser

(“serveruser” being the backup user name, here
“backupuser” on the backup server and “serverhost” its
hostname, here “NMRbackup”)

ssh serveruser@serverhost (type in password)

mkdir .ssh (if it doesn't exist)

mv nmrhost_rsync_key.pub .ssh/

cd .ssh

touch authorized_keys

chmod 600 authorized_keys

cat nmrhost_rsync_key.pub >> authorized_keys

If more than one NMR spectrometer host shall send its
backup data to the server, repeat steps 4) and 5) on the
other NMR hosts and copy their nmrhost_rsync_key.pub
public keys to the backup server.

6 Now test rsync via ssh (should NOT ask for a password
anymore). Log in to the spectrometer host again and type
(all one line):

rsync -aqu -e "ssh -i /home/nmruser/cron/
nmrhost_rsync_key"/nmrhost_dir
/serveruser@serverhost:/serverhost_dir

In the present example, this would be (all one line):

rsync -aqu -e "ssh -i
/home/vnmr1/cron/400MR_rsync_key"/home/data/
backupuser@NMRbackup:/home/NMRbackup

If this still asks for a password, it is likely that some
permissions on the private key (on the NMR host), of the
public "authorized_keys" file, .ssh directory and home
directory (on nmrhost) are not set securely enough:
Neither "group" nor "other" should have write permissions
on any of these files or directories. In this case, ssh
deems the procedure not to be secure and asks for the
password.

7 If data backup has started in the correct way, you can
now create the crontab entry. Add a line to the file

Linux Level Programming 4

VnmrJ 4 User Programming 435

/etc/crontab of the spectrometer host reading something
like this (see section “Backup to a second hard disk”
above for a detailed description of the crontab file):

*/5 * * * * nmruser rsync -aqu -e "ssh
–i/home/nmruser/cron/nmrhost_rsync_key"/nmrhost_d
ir /serveruser@serverhost:/serverhost_dir

In the present example, this would be (Note: The lines
above and below represent one single line.):

*/5 * * * * vnmr1 rsync -aqu -e "ssh –i
/home/vnmr1/cron/400MR_rsync_key"/home/data/
backupuser@NMRbackup:/home/NMRbackup

If more than one NMR spectrometer host shall send its
backup data to the server, add the same line to the
crontab file of the other NMR hosts as well. Try to avoid
overlapping the backup times of the different computers
– use, for example “5 * * * *” for NMR host 1, “10 * * *
*” for NMR host 2 etc. to start their backups at 5
minutes past the hour for NMR host 1, 10 minutes past
the hour for NMR host 2 etc.

Note: Make sure the last item in the crontab line (here
“/backup”) does NOT end with an (accidentally added, for
example by copy- n- paste) empty string! The rsync
command will not be executed in this case.

Option B

The second setup backs up data by “pulling” them from the
spectrometer host to the file server via rsync and SSH. The
following recipe only works if the file server is also a Linux
or Unix computer. In this example, the user “backupuser”
shall back up the content of /home/data on the NMR
spectrometer host “400MR” to the “/home/backup” directory
of the backup server “NMRbackup” and is hence requires the
inverse process of setup A).

1 Log in as root on the spectrometer host (“400MR”).

2 Make sure both rsync and ssh are enabled by checking
the "System > Administration > Server Settings >
Services" tool: Choose "rsync" and "ssh", save (start the
daemons if necessary) and exit.

3 Check if SSH and rsync have been enabled on the remote
backup server (this typically has to be checked with the
local IT department, a user login also must be provided –
let’s assume a username “backupuser”).

436 VnmrJ 4 User Programming

4 Linux Level Programming

4 Generate a private/public key pair on the backup server.
Log in to the backup server as the provided serveruser
login (here “backupuser”). Type:

 mkdir /home/serveruser/cron

cd /home/serveruser/cron

ssh-keygen -t dsa -b 2048 -f serverhost_rsync_key

(“serverhost” is the network name of the backup server,
here, “NMRbackup”)

The output should be:

 Generating public/private dsa key pair.

 Enter passphrase ...: (press enter here)

 Enter same passphrase again...: (press enter again)

5 Now copy the public key to the NMR host (all one line):

scp serverhost_rsync_key.pub nmruser@nmrhost:
/home/nmruser

(“nmruser” being the NMR user name, here “backupuser”
on the backup server and “serverhost” its hostname, here
“NMRbackup”)

ssh nmruser@nmrhost (type in password)

mkdir .ssh (if it doesn't exist)

mv serverhost_rsync_key.pub .ssh/

cd .ssh

touch authorized_keys

chmod 600 authorized_keys

cat serverhost_rsync_key.pub >> authorized_keys

If the data of more than one NMR spectrometer host shall be
“pulled” to the backup server, repeat step 5) for the other
NMR hosts and copy the serverhost_rsync_key.pub public key
to the other NMR spectrometer hosts.

6 Now test rsync via ssh (should NOT ask for a password
anymore). Log in to the backup server again and type
(all one line):

rsync -aqu -e "ssh –i
/home/serveruser/cron/serverhost_rsync_key"
/nmruser@nmrhost:/nmrhost_dir /server_dir

Linux Level Programming 4

VnmrJ 4 User Programming 437

In the present example, this would be be (all one line):

rsync -aqu -e "ssh -i
/home/backupuser/cron/NMRbackup_rsync_key"
vnmr1@400MR:/home/data/ /home/backup

If this still asks for a password, it is likely that some
permissions on the private key (on the backup server), of
the public "authorized_keys" file, .ssh directory and home
directory (on nmrhost) are not set securely enough:
Neither "group" nor "other" should have write permissions
on any of these files or directories. In this case, ssh
deems the procedure not to be secure and asks for the
password.

7 If data backup has started in the correct way, you can
now create the crontab entry. Add a single line to the
file /etc/crontab of the backup server reading something
like this (see section “Backup to a second hard disk”
above for a detailed description of the crontab file):

*/5 * * * * serveruser rsync -aqu -e "ssh –i
/home/serveruser/cron/serverhost_rsync_key"
/nmruser@nmrhost:/nmrhost_dir /server_dir

In the present example, this would be (Note: The lines above
and below represent one single line!):

*/5 * * * * backupuser rsync -aqu -e "ssh –i
/home/backupuser/cron/NMRbackup_rsync_key"
vnmr1@400MR:/home/data/ /home/backup

If data of more than one NMR spectrometer host shall be
“pulled” to the backup server, add more lines to the
crontab file of the server, one per spectrometer host. Try
to avoid overlapping the backup times of the different
computers – use, for example “5 * * * *” for NMR host 1,
“10 * * * *” for NMR host 2 etc. to start their backups at
5 minutes past the hour for NMR host 1, 10 minutes past
the hour for NMR host 2 etc.

438 VnmrJ 4 User Programming

4 Linux Level Programming

439

Agilent VnmrJ 4 User Programming
Reference Guide

Agilent Technologies

5
Parameters and Data

VnmrJ Data Files 440

FDF (Flexible Data Format) Files 452

Reformatting Data for Processing 459

Creating and Modifying Parameters 464

Modifying Parameter Displays in VNMR 473

Modules 478

User-Written Weighting Functions 480

User-Written 484

440 VnmrJ 4 User Programming

5 Parameters and Data

VnmrJ Data Files

Although a number o<XREF>f different files are used by
VnmrJ to process data, VnmrJ data files use only two basic
formats:

Binary format – Stores

FIDs and transformed spectra. Binary files consist of a file
header describing the details of the data stored in the file,
followed by the spectral data in integer or floating point
format.

Text

format – Stores all other forms of data, such as line lists,
parameters, and all forms of reduced data obtained by
analyzing NMR spectra. The advantage of storing data in text
format is that it can be easily inspected and modified with a
text editor and can be copied from one computer to another
with no major problems. The text on Sun systems use the
ASCII format in which each letter is stored in one byte.

Binary data files

Binary data files are used in the VnmrJ file system to store
FIDs and the transformed spectra. FIDs and their associated
parameters are stored as filename.fid files. A
filename.fid file is always a directory file containing the
following individual files:

• filename.fid/fid is a binary file containing the FIDs.

• filename.fid/procpar is a text file with parameters
used to obtain the FIDs.

• filename.fid/text is a text file.

In experiments, binary files store FIDs and spectra. In
non- automation experiments, the FID is stored within the
experiment, regardless of what the parameter file is set to.
The path ~username/vnmrsys/expn/acqfil/fid is the full
Linux path to that file. FIDs are stored as either 16- or
32- bit integer binary data files, depending on whether the
data acquisition was performed with dp='n' or dp='y',
respectively.

After a Fourier transform, the experiment file
expn/datdir/data contains the transformed spectra stored
in a 32- bit floating point format. This file always contains
complex numbers (pairs of floating point numbers), except

Parameters and Data 5

VnmrJ 4 User Programming 441

if pmode='' was selected in processing 2D experiments. To
speed up the display, VnmrJ also stores the phased spectral
information in expn/datdir/phasefile, where it is available
only after the first display of the data. In arrayed or 2D
experiments, phasefile contains only those traces that have
been displayed at least once after the last FT or phase
change. Therefore, a user program to access that file can
only be called after a complete display of the data.

The directory file, expn for current experiment n, typically
contains the following files:

expn/curpar is a text file containing the current parameters.

• expn/procpar is a text file containing the last used
parameters.

• expn/text is a text file.

• expn/acqfil/fid is a binary file that stores the FIDs.

• expn/datdir/data is a binary file with transformed
complex spectrum.

• expn/datdir/phasefile is a binary file with transformed
phased spectrum.

• expn/sn is saved display number n.

To access information from one of the experiment files of
the current experiment, the user must be sure that each of
these files has been written to the disk. The problem arises
because VnmrJ tries to keep individual blocks of the binary
files in the internal buffers as long as possible to minimize
disk accesses. This buffering in memory is not the same as
the disk cache buffering that the Linux operating system
performs. The flush command can be used in VnmrJ to
write all data buffers into disk files (or at least into the disk
cache, where it is also available for other processes). The
command fsave can be used in VnmrJ to write all
parameter buffers into disk files.

The default directory for the 3D spectral data is
curexp/datadir3d. The output directory for the extracted
2D planes is the same as that for the 3D spectral data,
except that 2D uses the /extr subdirectory and 3D uses the
/data subdirectory. Following are the files and further
subdirectories within the /data 3D data subdirectory:

• data1 to data# are the actual binary 3D spectral data
files. If the option nfiles is not entered, the number of
data files depends upon the size of the largest 2D plane
and the value for the Linux environmental parameter
memsize.

442 VnmrJ 4 User Programming

5 Parameters and Data

• info is a directory that stores the 3D coefficient text file
(coef), the binary information file (procdat), the 3D
parameter set (procpar3d), and the automation file
(auto). The first three files are created by the
set3dproc() command within VnmrJ. The last file is
created by the ft3d program.

• log is a directory that stores the log files produced by
the ft3d program. The file f3 contains all the log output
for the f3 transform. For the f and f transforms, there are
two log files for each data file- one for the f2 transform
(f2.#) and one for the f1 (f1.#). The file master
contains the log output produced by the master ft3d
program.

Data file structures

A data file header of 32 bytes is placed at the beginning of
a VnmrJ data file. The header contains information about
the number of blocks and their size. It is followed by one or
more data blocks. At the beginning of each block, a data
block header is stored, which contains information about the
data within the individual block. A typical 1D data file,
therefore, has the following form:

data file header

header for block 1

data of block 1

header for block 2

data of block 2

. . .

The data headers allow for 2D hypercomplex data that may
be phased in both the f1 and f2 directions. To accomplish
this, the data block header has a second part for the 2D
hypercomplex data. Also, the data file header, the data block
header, and the data block header used with all data have
been slightly revised. The new format allows processing of
FIDs obtained with earlier versions of VnmrJ.The 2D
hypercomplex data files with datafilehead.nbheaders=2
have the following structure:

data file header

header for block 1

second header for block 1

data of block 1

header for block 2

second header for block 2

Parameters and Data 5

VnmrJ 4 User Programming 443

data of block 2

. . .

All data in this file are contiguous. The byte following the
32nd byte in the file is expected to be the first byte of the
first data block header. If more than one block is stored in a
file, the first byte following the last byte of data is expected
to be the first byte of the second data block header. Note
that these data blocks are not disk blocks; rather, they are a
complete data group, such as an individual trace in an
experiment. For non- arrayed 1D experiments, only one block
will be present in the file.

Details of the data structures and constants involved can be
found in the file data.h, which is provided as part of the
VnmrJ source code license. The C specification of the file
header is the following:

struct datafilehead

/* Used at start of each data file (FIDs, spectra, 2D) */

{
long nblocks; /* number of blocks in file */

long ntraces; /* number of traces per block */

long np; /* number of elements per trace */

long ebytes; /* number of bytes per element */

long tbytes; /* number of bytes per trace */

long bbytes; /* number of bytes per block */

short vers_id; /* software version, file_id status bits
*/

short status; /* status of whole file */

long nbheaders; /* number of block headers per block */

};

The variables in datafilehead structure are set as follows:

• nblocks is the number of data blocks present in the file.

• ntraces is the number of traces in each block.

• np is the number of simple elements (16- bit integers,
32- bit integers, or 32- bit floating point numbers) in one
trace. It is equal to twice the number of complex data
points.

• ebytes is the number of bytes in one element, either 2
(for 16- bit integers in single precision FIDs) or 4 (for all
others).

• tbytes is set to (np*ebytes).

• bbytes is set to (ntraces*tbytes +
nbheaders*sizeof(struct datablockhead)). The size of
the datablockhead structure is 28 bytes.

444 VnmrJ 4 User Programming

5 Parameters and Data

• vers_id is the version identification of present VnmrJ.

• nbheaders is the number of block headers per data block.

• status is bits as defined below with their hexadecimal
values.

All other bits must be zero.

* If S_FLOAT=0, S_32=0 for 16- bit integer, or S_32=1 for
32- bit integer.
If S_FLOAT=1, S_32 is ignored.

Table 47 Bits 0–6: file header and block header status bits (bit 6 is
unused)

0 S_DATA 0x1 0 = no data, 1 = data

1 S_SPEC 0x2 0 = FID, 1 = spectrum

2 S_32 0x4 *

3 S_FLOAT 0x8 0 = integer, 1 = floating
point

4 S_COMPLEX 0x10 0 = real, 1 = complex

5 S_HYPERCOMPLEX 0x20 1 = hypercomplex

Table 48 Bits 7–14: file header status bits (bits 10 and 15 are unused)

7 S_ACQPAR 0x80 0 = not Acqpar, 1 = Acqpar

8 S_SECND 0x100 0 = first FT, 1 = second FT

9 S_TRANSF 0x200 0 = regular, 1 = transposed

11 S_NP 0x800 1 = np dimension is active

12 S_NF 0x1000 1 = nf dimension is active

13 S_NI 0x2000 1 = ni dimension is active

14 S_NI2 0x4000 1 = ni2 dimension is active

Parameters and Data 5

VnmrJ 4 User Programming 445

Block headers are defined by the following C specifications:

struct datablockhead

/* Each file block contains the following header */

{

short scale; /* scaling factor */

short status; /* status of data in block */

short index; /* block index */

short mode; /* mode of data in block */

long ctcount; /* ct value for FID */

float lpval; /* f2 (2D-f1) left phase in phasefile */

float rpval; /* f2 (2D-f1) right phase in phasefile */

float lvl; /* level drift correction */

float tlt; /* tilt drift correction */

};

status is bits 0–6 defined the same as for file header status.
Bits 7–11 are defined below (all other bits must be zero):

Additional data block header for hypercomplex 2D data:

struct hypercmplxbhead

{

short s_spare1; /* short word: spare */

short status; /* status word for block header */

short s_spare2; /* short word: spare */

short s_spare3; /* short word: spare */

long l_spare1; /* long word: spare */

float lpval1; /* 2D-f2 left phase */

float rpval1; /* 2D-f2 right phase */

float f_spare1; /* float word: spare */

float f_spare2; /* float word: spare */

};

Table 49 Bits 7–11

7 MORE_BLOCKS 0x80 0 = absent, 1 = present

8 NP_CMPLX 0x100 0 = real, 1 = complex

9 NF_CMPLX 0x200 0 = real, 1 = complex

10 NI_CMPLX 0x400 0 = real, 1 = complex

11 NI2_CMPLX 0x800 0 = real, 1 = complex

446 VnmrJ 4 User Programming

5 Parameters and Data

Main data block header mode bits 0–15:

The actual FID data are typically stored as pairs of
floating- point numbers. The first represents the real part of
a complex pair and the second represents the imaginary
component. In phase- sensitive 2D experiments, "X" and "Y"
experiments are similarly interleaved. The format of the data
points and the organization as complex pairs must be
specified in the data file header.

Table 50 Bits 0–3: bit 3 is currently unused

0 NP_PHMODE 0x1 1 = ph mode

1 NP_AVMODE 0x2 1 = av mode

2 NP_PWRMODE 0x4 1 = pwr mode

Table 51 Bits 4–7: bit 7 is currently unused

4 NF_PHMODE 0x10 1 = ph mode

5 NF_AVMODE 0x20 1 = av mode

6 NF_PWRMODE 0x40 1 = pwr mode

Table 52 Bits 8–11: bit 11 is currently unused

8 NI_PHMODE 0x100 1 = ph mode

9 NI_AVMODE 0x200 1 = av mode

10 NI_PWRMODE 0x400 1 = pwr mode

Table 53 Bits 12–15: bit 15 is currently unused

12 NI2_PHMODE 0x8 1 = ph mode

13 NI2_AVMODE 0x100 1 = av mode

14 NI2_PWRMODE 0x2000 1 = pwr mode

Table 54 Usage bits for additional block headers
(hypercmplxbhead.status)

U_HYPERCOMPLEX 0x2 1 = hypercomplex block structure

Parameters and Data 5

VnmrJ 4 User Programming 447

VnmrJ use of binary data files

To understand how VnmrJ uses individual binary data files,
consider the example of a simple Fourier transform followed
by the display of the spectrum. The FT is performed with
the command ft, which does the following:

• Copy processing parameters from curpar into procpar.

• If FID is not in the fid file buffer, open the fid file (if
not already open) and load it into buffer. Initialize the
data file with the proper size (using parameter fn). Store
the FID in the data file buffer.

• Apply dc drift correction and first point correction.

• Apply weighting function, if requested.

• Zero fill data, if required.

• Fourier transform data in data file buffer.

At this point, the data file buffer contains the complex
spectrum. Unless other FTs are done, which use up more
memory space than assigned to the data file buffer, the data
is not automatically written to the file expn/datdir/data at
this time. Joining a different experiment or the command
flush performs such a write operation.

The ds command takes the following steps in displaying the
spectrum:

1 If the data is not present in the phasefile buffer, or if
the phase parameters have changed, ds tries to open the
phase file (if not already open) and load data into the
buffer (if the phasefile is present). If ds is unsuccessful,
the data must be phased:

a If the data is not in the data file buffer, ds opens the
data file (if not already open) and loads it into the
buffer.

b ds initializes the phasefile buffer with the proper size
(using the same parameter fn as used for last FT).

c ds calculates the phased (or absolute value) spectrum
and stores it in the phasefile buffer.

2 ds calculates the display and displays the spectrum.

The phasefile buffer now contains the phased spectrum.
Unless other displays are done, which use up more memory
space than assigned to the phasefile buffer, the data is not
automatically written to the file expn/datdir/phasefile at
this time. Joining a different experiment or entering the
command flush performs such a write operation.

448 VnmrJ 4 User Programming

5 Parameters and Data

Depending on the nature of the data processing, the two
files data and phasefile will contain different information,
as follows:

• After a 1D FT – data contains a complex spectrum,
which can be used for phased or absolute value displays.

• After a 1D display – phasefile contains either phased
or absolute value data, depending on which type of
display had been selected.

• After a 2D FID display – data contains the complex FIDs,
floated and normalized for different scaling during the 2D
acquisition. phasefile contains the absolute value or
phased equivalent of this FID.

• After the first FT in a 2D experiment – data contains
the once- transformed spectra. This is equivalent to the
interferograms, if the data file is properly reorganized
(see f1 and f2 traces in “Storing multiple traces”). If a
display is done now, phasefile contains phased (or
absolute value) half- transformed spectra or
interferograms.

• After the second FT in a 2D experiment – data contains
the fully transformed spectra, and after a display,
phasefile contains the equivalent phased or
absolute- value spectra.

Storing multiple traces

Arrayed experiments are handled in VnmrJ by storing the
multiple traces of arrayed experiments in one file. To allow
this, the file is divided into several blocks, each containing
one trace. Therefore, in an arrayed experiment, the files fid,
data, and phasefile typically contain the same number of
blocks. The number of traces in an arrayed experiment is
identical to the parameter arraydim. The only complication
when working with such data files in arrayed experiments
might be that there are "holes" in such files. The holes occur
if not all FIDs are transformed or displayed. They do not
present a problem as long as a user program uses a "seek"
operation just to position the file pointer at the right point
in the file and does not try to read traces that have never
been calculated.

You can look at 2D experiments as a special case of an
arrayed experiment; however, the situation is complicated by
the fact that the data often has to be transposed. After the
first FT, the resulting spectra are transposed to become the
FIDs used for the second FT, and after the second FT, the

Parameters and Data 5

VnmrJ 4 User Programming 449

user might want to work on traces in either the f1 or f2
direction. Furthermore, some types of symmetrization and
baseline correction algorithms may have to work on traces in
both directions at the same time. The situation is
complicated by the fact that the "in place" matrix
transposition of large data sets is a very complex operation,
requiring many disk accesses. Therefore, this can not be
used in a system that has to transform large non- symmetric
data sets in a short time.

"Out of place" transpositions are not acceptable for large
data sets because they double the disk space requirements of
the large 2D experiments. Therefore, VnmrJ software uses a
storage format in the 2D data file that allows access to both
rows and columns at the same time. Because of the
proprietary nature and complexity of the algorithm involved,
it is not presented here. The storage format is used only in
datdir/data.

2D FIDs are stored the same way as 1D FIDs. Transformed
2D data sets are stored in data in large blocks of typically
256K bytes.This means that multiple traces are combined to
form a block. Within one block, the data is not stored as
individual traces, but is scrambled to make access to rows
and columns as fast as possible.

Phased 2D data is stored in phasefile in the same large
blocks as in data, but the traces within each block are
stored sequentially in their natural order. Both traces along
f1 and f2 are stored in the same file. The first block(s)
contain traces number 1 to fn along the f1 axis; the next
block(s) contains traces number 1 to fn1 along the f2 axis.
Note again that phasefile will only contain data if the
corresponding display operation has been performed.
Therefore, in most typical situations, where only a display
along one of the two 2D axes is done, phasefile will
contain only the block(s) for the traces along f1 or a 'hole'
followed by the block(s) for the traces along f2. Furthermore,
in large experiments, where multiple blocks must be used to
store the whole data set, only a 'full' display will ensure that
all blocks were actually calculated.

450 VnmrJ 4 User Programming

5 Parameters and Data

Header and data display

The VnmrJ commands ddf, ddff, and ddfp display file
headers and data. ddf displays the data file in the current
experiment. Without arguments, only the file header is
displayed. Using
ddf<(block_number,trace_number,first_number)>, ddf
displays a block header and part of the data set of that
block is displayed. block_number is the block number,
default 1. trace_number is the trace number within the
block, default 1. first is the first data element number
within the trace,
default 1.

The ddff command displays the FID file in the current
experiment and the ddfp command displays the phase file in
the current experiment. Without any arguments, both display
only the file header. Using the same arguments as the ddf
command, ddff and ddfp display a block header and part of
the data of that block is displayed. The mstat command
displays statistics of memory usage by VnmrJ commands.

Binary files in VnmrJ and byte order

There are two competing, incompatible standards for storing
binary data in the computing industry:

• In systems with "big- endian" architecture (e.g., Motorola
MC680x0, Motorola PowerPC, Sun SPARC), multi- byte
data words are stored with the most significant byte
(MSB) first;

• In systems with "little- endian" architecture (e.g., Intel
x86), multi- byte data words are stored with the least
significant byte (LSB) first.

This implies that, in general, when reading binary data that
were written on a system with the "other" architecture,
software, in general, needs to perform a byte- swapping
operation (0,1 –> 1,0; 0,1,2,3 –> 3,2,1,0; 0,1,2,3,4,5,6,7 –>
7,6,5,4,3,2,1,0).

For over two decades, Varian used computing platforms with
"big- endian" architecture (first Motorola MC680x0, then Sun
SPARC). VnmrJ now runs on Intel x86- based computers. To
avoid working with two incompatible binary data formats,
VnmrJ has retained the "big- endian" data format, i.e., all
binary VnmrJ data files are written in "MSB mode"; if
running on Intel x86 PC platforms, VnmrJ performs a byte
swapping operation when reading binary files, and the bytes

Parameters and Data 5

VnmrJ 4 User Programming 451

are also swapped prior to writing data to disk. The key is
that all binary data files used in connection with VnmrJ are
use MSB byte ordering, independent of the architecture on
which they were created.

452 VnmrJ 4 User Programming

5 Parameters and Data

FDF (Flexible Data Format) Files

The FDF file <XREF>format was developed to support the
Image Browser, chemical shift imaging (CSI), and
single- voxel spectroscopy (SVS) applications. When these
applications were under development, the current VnmrJ file
formats for image data were not easily usable for the
following reasons:

• The data and parameters describing the data were
separated into two files. If the files were ever separated,
there would be no way to use or understand the data.

• The data file had embedded headers that were not needed
and provided no useful purpose.

• There was no support or structure for saving multislice
data sets or a portion of a multislice data set as image
files.

FDF was developed to make it similar to VnmrJ formats,
with parameters in an easy- to- manipulate ASCII format and
a data header that is not fixed so that parameters can be
added. This format makes it easy for users and different
applications to manipulate the headers and add needed
parameters without affecting other applications.

File structures and naming conventions

Several file structure and naming conventions have been
developed for more ease in using and interpreting files.
Applications should not assume certain names for certain
file; however, specific applications may assume default
names when outputting files.

Directories

The directory naming convention is <name>.dat. The
directory can contain a parameter file and any number of
FDF files. The name of the parameter file is procpar, a
standard VnmrJ name.

File names

Each type of file has a different name in order to make the
file more recognizable to the user. For image files, the name
is image [nnnn].fdf, where nnnn is a numeric string from
0000 to 9999. For volumes, the name is volume [nnnn].fdf,
where nnnn is also a numeric string from 0000 to 9999.
Programs that read FDF files should not depend on these

Parameters and Data 5

VnmrJ 4 User Programming 453

names because they are conventions and not definitions.

Compressed files

Although not implemented at this time, compression will be
supported for the data portion of the file. The headers will
not be compressed. A field will be put in the header to
define the compression method or to identify the command
to uncompress the data.

File format

The format of an FDF file consists of a header and data.

Figure 5 is an example of an FDF header. The header is in
ASCII text and its fields are defined by a data definition
language. Using ASCII text makes it easy to decipher the
image content and add new fields, and is compatible with
the ASCII format of the procpar file. The fields in the data
header can be in any order except for the magic number
string, which are the first characters in the header, and the
end of header character <null>, which must immediately
precede the data. The fields have a C- style syntax. A correct
header can be compiled by the C compiler and should not
result in any errors.

The data portion is binary data described by fields in the
header. It is separated from the header by a null character.

454 VnmrJ 4 User Programming

5 Parameters and Data

Figure 5 Example of an FDF Header

Header parameters

The fields in the data header are defined in this section.

Magic number

The magic number is an ASCII string that identifies the file
as a FDF file. The first two characters in the file must be
#!, followed by the identification string. Currently, the string
is #!/usr/local/fdf/startup.

Data set dimensionality or rank fields

These entries specify the data organization in the binary
portion of the file.

• rank is a positive integer value (1, 2, 3, 4,...), giving the
number of dimensions in the data file (e.g., int rank=2;).

• matrix is a set of rank integers, giving the number of
data points in each dimension (e.g., for rank=2, float
matrix[]={256,256};).

• spatial_rank is a string ("none", "voxel", "1dfov",
"2dfov", "3dfov") for the type of data (e.g., char
*spatial_rank="2dfov";).

Data content fields

The following entries define the data type and size.

• storage is a string ("integer", "float") that defines the
data type (e.g., char *storage="float";).

• bits is an integer (8, 16, 32, or 64) that defines the size
of the data (e.g.,
float bits=32;).

• type is a string ("real", "imag", "absval", "complex") that
defines the numerical data type (e.g., char
*type="absval";).

Data location and orientation fields

The following entries define the user coordinate system and
specify the size and position of the region from which the
data was obtained. Magnet Coordinates as Related to User
Coordinates illustrates the coordinate system. Vectors that
correspond to header parameters are shown in boldface.

Parameters and Data 5

VnmrJ 4 User Programming 455

• orientation specifies the orientation of the user
reference frame (x, y, z) with respect to the magnet frame
(X, Y, Z). orientation is given as a set of nine direction
cosines, in the order:

, , , , , , , ,

where:

and

The value is written as nine floating point values grouped as
three triads (e.g., float
orientation[]={0.0,0.0,1.0,-1.0,0.0,0.0,0.0,1.0,0.0}
;).

Figure 6 Magnet Coordinates as Related to User Coordinates

d11 d12 d13 d21 d22 d23 d31 d32 d33

x d11X d12Y d13Z+ +=

y d21X d22Y d23Z+ +=

z d31X d32Y d33Z+ +=

X d11x d21y d31z+ +=

Y d12x d22y d32z+ +=

Z d13x d23y d33z+ +=

456 VnmrJ 4 User Programming

5 Parameters and Data

• location is the position of the center of the acquired
data volume relative to the center of the magnet, in the
user's co- ordinate system. The position is given in
centimeters as a triple (three floating point values) of x,
y, z distances
(e.g., float location[]={10.0,15.0,0.208};).

• roi is the size of the acquired data volume (three floating
point values), in centimeters, in the user's coordinate
frame, not the magnet frame (e.g.,
float roi[]={10.0,15.0,0.208};). Do not confuse this
roi with ROIs that might be specified inside the data set.

Data axes

The data axes entries specify the user co- ordinates of data
points. These axes do not tell how to orient the display of
the data, but only define what to call the co- ordinates of a
given datum. There are no standard header entries to specify
the orientation of the data display. Currently, data is always
displayed or plotted in the same order that it is stored. The
fastest data dimension is plotted horizontally from left to
right; the next dimension is plotted vertically from top to
bottom.

• origin is a set of rank floating point values, giving the
user co- ordinates of the first point in the data set (e.g.,
float origin[]={5.0,6.91};).

• span is a set of rank floating point values for the signed
length of each axis, in user units. A positive value means
the value of the particular co- ordinate increases going
away from the first point (e.g., float
span[]={–10.000,–15.000};).

• abscissa is a set of rank strings ("hz", "s", "cm", "cm/s",
"cm/s2", "deg", "ppm1", "ppm2", "ppm3") that identifies the
units that apply to each dimension (e.g., char
*abscissa[]={"cm","cm"};).

• ordinate is a string ("intensity", "s", "deg") that gives
the units that apply to the numbers in the binary part of
the file (e.g., char *ordinate[]={"intensity"};).

Nuclear data fields

Data fields may contain data generated by interactions
between more than one nucleus (e.g., a 2D chemical shift
correlation map between protons and carbon). Such data
require interpreting the term "ppm" for the specific nucleus
if ppm to frequency conversions and properly labeling axes

Parameters and Data 5

VnmrJ 4 User Programming 457

arising from different nuclei are necessary. To properly
interpret ppm and label axes, the identity of the nucleus in
question and the corresponding nuclear resonance frequency
are needed. These fields are related to the abscissa values
"ppm1", "ppm2", and "ppm3" in that 1, 2, and 3 are indices into
the nucleus and nucfreq fields. That is, the nucleus for the
axis with abscissa string "ppm1" is the first entry in the
nucleus field.

• nucleus is one entry ("H1", "F19", same as VnmrJ tn
parameter) for each rf channel (e.g., char
*nucleus[]={"H1","H1"};).

• nucfreq is the nuclear frequency (floating point) used for
each rf channel (e.g., float
nucfreq[]={200.067,200.067};).

Miscellaneous fields

• checksum is the checksum of the data. Changes to the
header do not affect the checksum. The checksum is a
32- bit integer, calculated by the gluer program (e.g., int
checksum=0787271376;).

• compression is a string with either the command needed
to uncompress the data or a tag giving the compression
method. This field is not currently implemented.

End of header

A character specifies the end of the header. If there is data,
it immediately follows this character. The data should be
aligned according to their data type. For single precision
floating point data, the data is aligned on word boundaries.
Currently, the end of the header character is <zero> (an
ASCII "NUL").

Transformations

By editing some of the header values, it is possible to make
a program that reads FDF data files to perform simple
transformations. For example, to flip data left- to- right, set:

span'0=–span0
origin'0=origin0–span'0

Creating FDF files

To generate files in the FDF format, the following macros are
available to write out single or multi- slice images:

458 VnmrJ 4 User Programming

5 Parameters and Data

• For the current imaging software—including sequences
sems, mems, and flash—use the macro
svib(directory<,'f'|'m'|'i'|'o'>), where directory
is the directory name desired (.dat is appended to the
name), 'f' outputs data in the floating point format (this
is the default), 'm' or 'i' outputs data as 12- bit integer
values in 16- bit words, and 'b' outputs data in 8- bit
integer bytes.

• For older style SIS imaging sequences and microimaging
sequences, use the macro svsis(directory<,'f'|'m'>),
where directory, 'f', and 'm' are defined the same as
svib.

Raw data from the FID file of the current experiment can be
saved as an FDF file with the svfdf(directory) macro,
where directory is the name of the directory in which to
store the files (.dat is appended to the name). Data is saved
in multiple files, with one trace per file. The files are named
fid0001.fdf, fid0002.fdf, etc. The procpar file from the
current experiment is also saved in the same directory.

Another way to create the FDF files is to edit or create a
header defining a set of data with no headers and attach it
to the data file with the fdfgluer program. Use the syntax
fdfgluer header_file <data_file <output_file>> (from
Linux only). This program takes a header_file and a
data_file and puts them together to form an FDF file. It
also calculates a checksum and inserts it into the header. If
the data_file argument is not present, fdfgluer assumes
the data as input from the standard input, and if the
output_file name is not present, fdfgluer writes the FDF
file to the standard output.

Splitting FDF files

The fdfsplit command takes an FDF file and splits it into
its data and header parts. The syntax is fdfsplit fdf_file
data_file header_file (from Linux only). If the header
still has a checksum value, that value should be removed.

Parameters and Data 5

VnmrJ 4 User Programming 459

Reformatting Data for Processing

Sometimes, data Reformatting spectraacquired in an
experiment has to be reformatted for processing. This is
especially true for in- vivo imaging experiments, where time
is critical in getting the data. So, experiments are designed
to acquire data quickly, but not necessarily in the most
desirable format for processing. Reformatting data can also
occur in other applications because of a particular
experimental procedure.

The VnmrJ processing applications ft2d and ft3d can
accept data in standard, compressed, or
compressed- compressed (3D) data formats. There are a
number of routines that allow users to reformat their data
into these formats for processing. The reformatting routines
allow users to compress or uncompress their data (flashc),
move data around between experiments and into almost any
format (mf, mfblk, mfdata, mftrace), reverse data while
moving it (rfblk, rfdata, rftrace), or use a table of values,
in this case a table stored in tablib, to sort and reformat
scans of data (tabc, tcapply).

In this section, standard and compressed data are defined,
reformatting options are described, and several examples are
presented. Table 55 on page 460 summarizes the
reformatting commands described in this section. Note that
the commands rsapply, tcapply, tcclose, and tcopen are
for 2D spectrum data; the remaining commands in the table
are for FID data.

460 VnmrJ 4 User Programming

5 Parameters and Data

Table 55 Commands for Reformatting Data

Standard and compressed formats

Usually, when discussing standard and compressed data
formats, standard means the data was acquired using the
arrayed parameters ni and ni2, which specify the number of
increments in the second and third dimensions; and
compressed means using parameter nf to specify the
increments in the second dimension.

For multi- slice imaging, standard means using ni to specify
the phase- encode increments and nf to specify the number
of slices and compressed means using nf to specify the
phase- encode increments while arraying the slices.

Compressed- compressed means using nf to specify the
phase- encode increments and slices for 2D or to specify the
phase- encode increments in the second and third dimensions
for 3D. In compressed- compressed data sets, nf can be set

Parameters and Data 5

VnmrJ 4 User Programming 461

to nv*ns or nv*nv2, where nv is the number of
phase- encode increments in the second dimension, nv2 is
the number of phase- encode increments in the third
dimension, and ns is the number of slices.

To give another view of data formats, which will help when
using the "move FID" commands, each ni increment or array
element is stored as a data block in an FID file and each nf
FID is stored as a trace within a data block in a FID file.

Compress or decompress data

The most common form of reformatting for imaging has been
to use the flashc command to convert compressed data sets
to standard data sets in order to run ft2d on the data. With
the implementation of ft2d('nf',<index>), flashc is no
longer necessary. However, use of flashc is still necessary
for converting compressed- compressed data to compressed
or standard formats.

Move and reverse data

The commands mf, mfblk, mfdata, and mftrace are available
to move data around in a FID file or to move data from one
experiment FID file to another experiment FID file. These
commands give users more control in reformatting their data
by allowing them to move entire FID files, individual blocks
within a FID file, individual traces within a block of a FID
file, or sections of data within a block of a FID file.

To illustrate the use of the "move FID" commands, Figure 6
on page 455 is an example with code from a macro that
moves a 3D dataset from an arrayed 3D dataset to another
experiment that runs ft3d on the data. The $index variable
is the array index. It works on both compressed- compressed
and compressed 3D data.

The "reverse FID" commands rfblk, rftrace, and rfdata
are similar to their respective mfblk, mftrace, and mfdata
commands, except that rfblk, rftrace, and rfdata also
reverse the order of the data. The rfblk, rftrace, and
rfdata commands were implemented to support EPI (Echo
Planar Imaging) processing. Listing 3<XREF> is an example
of using these commands to reverse every other FID echo for
EPI data. Note that the mfopen and mfclose commands can
significantly speed up the data reformatting by opening and
closing the data files once, instead of every time the data set
is moved. The rfblk, rftrace, and rfdata commands can
also be used with the "move FID" commands.

462 VnmrJ 4 User Programming

5 Parameters and Data

Table convert data

VnmrJ supports reconstructing a properly ordered raw data
set from any arbitrarily ordered data set acquired under
control of an external AP table. The data must have been
acquired according to a table in the tablib directory. The
command for table conversion is tabc.

Reformatting spectra

The commands rsapply, to reverse a spectrum, and tcapply,
to reformat a 2D set of spectra using a table, support
reformatting of spectra within a 2D dataset. The types of
reformatting are the reversing of data within a spectrum and
the reformatting of arbitrarily ordered 2D spectrum by using
a table. These commands do not change the original FID
data, and they may provide some speed improvement over
the similar commands that operate on FID data. For 2D
data, an ft1d command should be applied to the data,
followed by the desired reformatting, and then an ft2d
command to complete the processing.

CAUTION For speed reasons, the "move FID" and "reverse FID" commands
work directly on the FID and follow data links. These commands can
modify data returned to an experiment with the rt command. To
avoid modification, enter the following sequence of VnmrJ
commands before manipulating the FID data:

cp(curexp+'/acqfil/fid',curexp+'/acqfil/fidtmp')

rm(curexp+'/acqfil/fid')

mv(curexp+'/acqfil/fidtmp',curexp+'/acqfil/fid')

Parameters and Data 5

VnmrJ 4 User Programming 463

Table 56 Listing 2 Code from a "Move FID" Macro

Table 57 Listing 3 Example of Command Reversing Data Order

464 VnmrJ 4 User Programming

5 Parameters and Data

Creating and Modifying Parameters

VnmrJ parameters and the<XREF>ir attributes are created
and modified with the commands covered in this section.
The parameter trees used by these commands are Linux files
containing the attributes of a parameter as formatted text.

Parameter types and trees

The types of parameters that can be created are 'real',
'string', 'delay', 'frequency', 'flag', 'pulse', and
'integer (default is 'real'). In brief, the meaning of these
types are as follows (for more details, refer to the
description of the create command in the VnmrJ Command
and Parameter Reference):

• 'real' is any positive or negative value.

• 'string' is composed of characters, and can be limited
to selected words by enumerating the possible values with
the command setenumeral.

• 'delay' is a value between 0 and 8190, in units of
seconds.

• 'frequency' is positive real number values.

• 'flag' is composed of characters, similar to the
'string' type, but can be limited to selected characters
by enumerating the possible values with the command
setenumeral. If enumerated values are not set, the
'string' and 'flag' types are identical.

• 'pulse' is a value between 0 and 8190, in units of
microseconds.

• 'integer' is composed of integers (0, 1, 2, 3,...),

The four parameter tree types are 'current', 'global',
'processed', and 'systemglobal' (the default is
'current'):

• 'current' contains the parameters that are adjusted to
set up an experiment. The parameters are from the file
curpar in the current experiment.

• 'global' contains user- specific parameters from the file
global in the vnmrsys directory of the present Linux
user.

• 'processed' contains the parameters with which the
data was obtained. These parameters are from the file
procpar in the current experiment.

Parameters and Data 5

VnmrJ 4 User Programming 465

• 'systemglobal' contains instrument- specific parameters
from the text file /vnmr/conpar. The config program is
used to define most of these parameters. All users have
the same systemglobal tree.

Tools for working with parameter trees

Table 58 lists commands for creating, modifying, and
deleting parameters.

To create a new parameter

Use create(parameter<,type<,tree>>) to create a new
parameter in a parameter tree with the name specified by
parameter. For example, entering
create('a','real','global') creates a new real- type
parameter a in the global tree. type can be 'real',
'string', 'delay', ' frequency', 'flag', 'pulse', or
'integer'. If the type argument is not entered, the default
is 'real'. tree can be 'current', 'global', 'processed',
or 'systemglobal'. If the tree argument is not entered, the
default is 'current'. See the section above for a description
of parameter types and trees. Note that these same
arguments are used with all the commands appearing in this
section.

466 VnmrJ 4 User Programming

5 Parameters and Data

Table 58 Commands for Working with Parameter Trees

To get the value of a parameter

The value of most parameters can be accessed simply by
using their name in an expression; for example, sw? or
r1=np accesses the value of sw and np, respectively.
However, parameters in the processed tree cannot be
accessed this way. Use
getvalue(parameter<,index><,tree>) to get the value of
any parameter, including the value of a parameter in a
processed tree. To make this easier, the default value of
tree is 'processed'. The index argument is the number of
a single element in an arrayed parameter (the default is 1).

To edit or set parameter attributes

Use paramvi(parameter<,tree>) to open the file for a
parameter in the vi text editor to edit the attributes. To
open a parameter file with an editor other than vi, use
paramedit(parameter<,tree>). Refer to entry for
paramedit in the VnmrJ Command and Parameter
Reference for information on how to select a text editor
other than vi. The format of a stored parameter is described
in the next section.

Several parameter attributes can be set by the following

Parameters and Data 5

VnmrJ 4 User Programming 467

commands:

• setlimit(parameter,maximum,minimum,step_size<,tree>
) sets the maximum and minimum limits and stepsize of
a parameter.

• setlimit(parameter,index<,tree>) sets the maximum
and minimum limits and the stepsize, but obtains the
values from the index- th entry of a table in conpar.

• setprotect(parameter,'set'|'on'|'off',bit_vals<,tre
e>) sets the protection bits associated with a parameter.
The keyword 'set' causes the current protection bits to
be replaced with the set specified by bit_vals (listed in
VnmrJ Command and Parameter Reference). 'on' causes
the bits specified in bit_vals to be turned on without
affecting other protection bits. 'off' causes the bits
specified in bit_vals to be turned off without affecting
other protection bits.

• settype(parameter,type<,tree>) changes the type of an
existing parameter. A string parameter can be changed
into a string or flag type, or a real parameter can be
changed into a real, delay, frequency, pulse, or integer
type.

• setvalue(parameter,value<,index><,tree>) sets the
value of any parameter in a tree. setvalue bypasses
normal range checking for parameter entry. It also
bypasses any action that would be invoked by the
parameter's protection bits.

• setenumeral(parameter,N,enum1,enum2,...,enumN<,tree
>) sets possible values of a string- type or flag- type
parameter in a parameter tree.

• setgroup(parameter,group<,tree>) sets the group (also
called the Ggroup) of a parameter in a tree. The group
argument can be 'all', 'sample', 'acquisition',
'processing', 'display', or 'spin'.

• setdgroup(parameter,dgroup<,tree>) sets the Dgroup
of a parameter in a tree. The dgroup argument is an
integer. The usage of setdgroup is set by the application.
Only the experimental user interface currently uses this
command.

To display a parameter

Use display(parameter|'*'|'**'<,tree>)to display one or
more parameters and their attributes from a parameter tree.
The first argument can be one of the following three options:

468 VnmrJ 4 User Programming

5 Parameters and Data

• a parameter name (to display the attributes of that
parameter,

• '*' (to display the name and value of all parameters in a
tree), or

• '**' (to display the attributes of all parameters in a tree.

The results are displayed in the Process tab, Text Output.

To move parameters

Use groupcopy(from_tree,to_tree,group) to copy a set of
parameters of a group from one parameter tree to another
(it cannot be the same tree). group is the same keywords as
used with setgroup.

The fread(file<,tree<,'reset'|'value'>>) command
reads the parameters from a file and loads them into a tree.
The keyword 'reset' causes the tree to be cleared before
the new file is read; 'value' causes only the values of the
parameters in the file to be loaded. The
fsave(file<,tree>) command writes parameters from a
parameter tree to a file for which the user has write
permission. It overwrites any file that exists.

To destroy a parameter

The destroy(parameter<,tree>) command removes a
parameter from a parameter tree, while the
destroygroup(group<,tree>) command removes parameters
of a group from a parameter tree. The group argument uses
the same keywords as used with the setgroup command. If
the destroyed parameter was an array, the array parameter
is automatically updated.

To remove leftover parameters from previous experimental
setups, use prune. The prune(file) command destroys
parameters in the current parameter tree that are not also
defined in the parameter file specified.

Format of a stored parameter

To use the create command to create a new parameter, or
to use the paramvi and paramedit commands to edit a
parameter and its attributes, knowledge of the format of a
stored parameter is required. If an error in the format is
made, the parameter may not load. This section describes
the format.

The stored parameter format is made up of three or more

Parameters and Data 5

VnmrJ 4 User Programming 469

lines.

Line 1 contains parameter attributes and has the following
fields (given in the same order as they appear in the file):

• name is the parameter name, which can be any valid
string.

• subtype is an integer value for the parameter type: 0
(undefined), 1 (real), 2 (string), 3 (delay), 4 (flag), 5
(frequency), 6 (pulse), 7 (integer).

• basictype is an integer value: 0 (undefined), 1 (real), 2
(string).

• maxvalue is a real number for the maximum value that
the parameter can contain, or an index to a maximum
value in the parameter parmax (found in /vnmr/conpar).
Applies to both string and real types of parameters.

• minvalue is a real number for the minimum value that
the parameter can contain or an index to a minimum
value in the parameter parmin (found in /vnmr/conpar).
Applies to real types of parameters only.

• stepsize is a real number for the step size in which
parameters or index to a step size in the parameter
parstep (found in /vnmr/conpar) can be entered. If
stepsize is 0, it is ignored. Applies to real types only.

• Ggroup is an integer value: 0 (ALL), 1 (SAMPLE), 2
(ACQUISITION),
3 (PROCESSING), 4 (DISPLAY), 5 (SPIN).

• Dgroup is an integer value. The specific application
determines the usage of this integer.

470 VnmrJ 4 User Programming

5 Parameters and Data

• protection is a 32- bit word made up of the following bit
masks, which are summed to form the full mask:

• active is an integer value: 0 (not active), 1 (active).

• intptr is not used (generally set to 64).

Bit Value Description

0 1 Cannot array the parameter

1 2 Cannot change active/not active status

2 4 Cannot change the parameter value

3 8 Causes _{parameter} macro to be executed
upon parameter entry (e.g., if the parameter
is named sw, the macro _sw is executed when
sw is changed); an error is issued if such a
macro is not found

4 16 Avoids automatic redisplay

5 32 Cannot delete parameter

6 64 System parameter for spectrometer or data
station

7 128 Cannot copy parameter from tree to tree

8 256 Will not set array parameter

9 512 Cannot set parameter numeral values

10 1024 Cannot change the parameter's group

11 2048 Cannot change protection bits

12 4096 Cannot change the display group

13 8192 Take max, min, step from /vnmr/conpar
(systemglobal) parameters parmax, parmin,
parstep.

14 16384 Parameter marked for locking (P_LOCK, see
rtx)

15 32768 Global parameter not shared in multiple
VnmrJ viewports

16 65536 Force automatic redisplay in VnmrJ parameter
templates

Parameters and Data 5

VnmrJ 4 User Programming 471

Line 2 or the group of lines starting with line 2, lists the
values of the parameter. The first field on line 2 is the
number of values the parameter is set to. The format of the
rest of the fields on line 2 and subsequent lines, if any,
depends on the value of basictype set on line 1 and the
value entered in the first field on line 2:

• If basictype is 1 (real) and the first value on line 2 is
any number, all parameter values are listed on line 2,
starting in the second field. Each value is separated by a
space.

• If basictype is 2 (string) and the first value on line 2 is
1, the single string value of the parameter is listed in the
second field of line 2, inside double quotes.

• If basictype is 2 (string) and the first value on line 2 is
greater than 1, the first array element is listed in the
second field on line 2 and each additional element is
listed on subsequent lines, one value per line. Strings are
surrounded by double quotes.

The last line of a parameter file lists the enumerable values
of a string or flag parameter. This specifies the possible
values the string parameter can be set to. The first field is
the number of enumerable values. If this number is greater
than 1, all of the values are listed on this line, starting in
the second field.

For example, here is how a typical real parameter file,
named a, is interpreted (the numbers in parentheses are not
part of the file but are line references in the interpretation):

(1) a 31 1e+30 -1e+30 0 0 1 0 1 64

(2) 24.126400

(3) 0

This file is made up of the following lines:

• The parameter has the name a, subtype is 3 (delay),
basictype is 1 (real), maximum size is 1e+30, minimum
size is –1e+30, stepsize is 0, Ggroup is 0 (ALL), Dgroup is
1 (ACQUISITION), protection is 0 (cannot array the
parameter), active is 1 (ON), and intptr is 64 (not used).

• Parameter a has 1 value, the real number 24.126400.

• Parameter a has 0 enumerable values.

As another example, here are the values in a file for the
parameter tof:

(1) tof 5 1 7 7 7 2 1 8202 1 64

(2) 1 1160

472 VnmrJ 4 User Programming

5 Parameters and Data

(3) 0

The tof file is made up of the following lines:

• The parameter has the name tof, subtype is 5
(frequency), and basictype is 1 (real). To read the next 3
values, we must jump to the protection field. Because the
protection word value is 8202, which is 8192 + 8 + 2, then
bit 13 (8192), bit 3 (8), and bit 1 (2) bitmasks are set.
Because bit 13 is set, the maximum size, minimum size,
and stepsize values (each is 7) are indices into the 7th
array value in the parameters parmax, parmin, and
parstep, respectively, in the file conpar. Because bit 3 is
set, this causes a macro to be executed. The bit 1 bitmask
(2) is also set, which means that the active/not active
status of the parameter cannot be changed. For the
remaining fields, Ggroup is 2 (ACQUISITION), Dgroup is 1
(ACQUISITION), active is 1 (ON), and intptr is 64 (not
used).

• Parameter

• tof has 1 value, the real number 1160.

• Parameter

• tof has 0 enumerable values.

The following file is an example of a multi element array
character parameter, beatles:

(1) beatles 2 2 8 0 0 2 1 0 1 64

(2) 4 john

(3) paul

 george

 ringo

(4) 0

The beatles file is made up of the following lines:

• The parameter has the name of beatles, subtype is 2
(string), basictype is 2 (string), 8 0 0 is max min step
(not really used for strings), Ggroup is 2 (acquisition),
Dgroup is 1 (ALL), protection is 0, active is 1 (ON), 64 is
a terminating number.

• There are four elements to this variable; therefore, it is
arrayed.

• john is the first element in the array.

• paul, george, and ringo are the other three elements in
the array.

• 0 (zero) is the terminating line.

Parameters and Data 5

VnmrJ 4 User Programming 473

Modifying Parameter Displays in VNMR

The VNMR <XREF>plotting commands and macros— ap,
pap—are controlled by the template parameters, specifying
the content and form of the information plotted. The
template parameters have the same name as the respective
command or macro; for example, the plot created by the ap
command is controlled by the parameter ap in the
experiment's current parameter set.

To modify an existing template parameter, such as ap, enter
paramvi('ap') to use the vi text editor, or enter
paramedit('ap') to use the text editor set by the
environmental variable vnmreditor.

Display template

A plot template can have a single string or multiple strings.
The first number on the second line of a stored parameter
indicates the number of string templates. If the number is 1,
the display template is a single string; otherwise, a value
greater than 1 indicates the template is multiple strings.
Figure 7 shows an example of a single- string display
template (actually the parameter ap) and the resulting plot.

In a single- string template, the string always starts with a
double quote and then repeats the following information for
each column in the plot:

Figure 7 Single-String Display Template with Output

• Column number (e.g., 2)

• Condition for plot of column (optional, e.g., "4(ni)",
seeConditional and arrayed displays

• Colon

• Column title (e.g., 2D ACQUISITION)

• Colon

474 VnmrJ 4 User Programming

5 Parameters and Data

• Parameters to appear in column, separated by commas
(for notation, see

• Semicolon

At the end of the string is another double quote. Spaces
cannot appear anywhere in the string template, except as
part of a column title.

Column titles are often in upper case, but need not be, and
are limited to 19 characters. More than one title can appear
in the same column (such as shown above, SAMPLE and
DECOUPLING are both in column 2).

Parameters listed in "plain" form (e.g., tn,date,math) are
printed either as strings or in a form in which the number
of decimal places plotted varies, depending on the value of
the parameter.

To plot a specific number of digits past the decimal place,
the desired number is placed following a colon (e.g.,
sfrq:3,at:3,sw:0). Extra commas can be inserted to skip
rows within a column (e.g., math,,werr,wexp,).

The maximum number of columns is 4; each column can
have 17 lines of output. As this includes the title(s), fewer
than 17 parameters can be displayed in any one column. The
entire template is limited to 1024 characters or less.

As an alternative to a single- string template, which tends to
be difficult to read, a template can written as multiple
strings, each enclosed in double quotes. The first number
indicates the number of strings that follow. Each string must
start with a column number. Figure 8 contains the plot
template for the parameter dg2, which is a typical example
of a multiple- string template.

The conditional statement in this example (e.g., "(numrfch
>2)") is covered in Conditional and Arrayed
Displays<XREF>.

The title field can contain a string variable besides a literal.
If the variable is a real variable, or not present, or equal to
the null string, the variable itself is used as the title (e.g.,
mystrvar[1]='Example Col 1' and mystrvar[2]='Example
Col 2').

Parameters and Data 5

VnmrJ 4 User Programming 475

Figure 8 Multiple-String Display Template

Conditional and arrayed displays

Use of parentheses allows the conditional display of an
entire column and/or individual parameters. If the real
parameter within parentheses is not present, or is equal to 0
or to 'n', then the associated parameter or section is not
displayed. In the case of string parameters, if the real
number is not present, or is equal to the NULL string or the
character 'n', then the associated parameter or section is
not displayed. The following examples from the dg template
above demonstrate this format:

• p1 (p1):1 means display parameter p1 only when p1 is
non- zero.

• sbs (sb):3 means display sbs only when sb is active
(not equal to 'n').

• 4(ni):2D PROCESSING: means display the entire "2D
PROCESSING" section only when the ni parameter is
active and non- zero.

Similarly, a multiple variable expression can also be placed
within the parentheses for conditional plot of parameters.
Each expression must be a valid MAGICAL II expression (see
Chapter 1, “MAGICAL II Programming”) and must be
written so there is no space between the last character of
the expression and the closing parenthesis ")".

In summary, if a single variable expression is placed in the
parentheses, it is FALSE under the following conditions:

• Variable does not exist.

• Variable is real and equals 0 or is marked inactive.

NOTE If a parameter is arrayed, the display status is derived from the first value
of the array. Thus, if p1 is arrayed and the first value is 0, p1 will not
appear; if the first value is non-zero, p1 will appear, with "arrayed" as its
parameter value.

476 VnmrJ 4 User Programming

5 Parameters and Data

• Variable is a string variable equal to the NULL string or
equal to the character 'n'.

Multiple variable expressions are evaluated the same as in
MAGICAL II. If a variable does not exist, it is considered an
error.

Examples of multiple parameter expressions include the
following:

• 2(numrfch>2):2nd DECOUPLING: means display entire
"2nd DECOUPLING" section only when numrfch (number
of rf channels) is greater than 2.

• 3((myflag <> 'n') or ((myni > ni) and (mysw <
sw))):My Section: means display entire "My Section"
section only when myflag is not equal to 'n' or when
myni is greater than ni and mysw is less than sw.

The asterisk (...*) is a "special parameter" designator that
allows the value of a series of string parameters to be
displayed in a single row without names. This is more
commonly used with the parameters aig, dcg, and dmg, for
example:

aig*,dcg*,dmg*

For a tabular output of arrayed parameters, square brackets
([...]) are used. For example:

1: Sample Table Output:[pw,p1,d1,d2];

Notice that all parameters in the column must be in the
brackets; thus, the following is not recognized:

1: Sample Table Output:[pw,p1,d1],d2;

As arrayed variables are normally displayed with da, this
format is rarely needed.

The field width and digit field options can be used to clean
up the display. The first number after the colon is the field
width. The next colon is the digit field. For example:

1: Sample Table
Output:[pw:6:2,p1:6:2,d1:10:6,d2:10:6];

Here, the parameters pw and p1 are plotted in 6 columns
with 2 places after the decimal point, while d1 and d2 are
displayed in 10 columns with 6 places after the decimal
point.

Parameters and Data 5

VnmrJ 4 User Programming 477

Output format

For plot, each parameter and value occupies 20 characters of
space:

• Characters 1 to 8 are the name of the parameter.
Parameters with names longer than 8 characters are
permitted within VnmrJ itself but cannot be printed with
pap.

• Character 9 is always blank.

• Characters 10 to 18 are used for the parameter value.
Any parameter value exceeding 9 characters (a file name
is a common example) is continued on the next line; in
this case, character 19 is a tilde "~", which is used to
show continuation.

• Character 20 is always blank.

For printing with the pap command, which uses the ap
parameter template, a "da" listing is printed, starting in
column 3, so that the template will typically specify only two
columns of output. ap can specify more than two columns;
but if any parameter is arrayed, the listing of that parameter
will overwrite the third column. For printing, the maximum
number of lines in each column is 64.

478 VnmrJ 4 User Programming

5 Parameters and Data

Modules

A module is a file that contains a small or limited parameter
set. The purpose of creating a module is to simplify coding
such as pulse sequence programming by grouping the
parameters required for a given task or pulse sequence
element into a module. That module can then be used to
load that group of parameters wherever they are needed.

The modules that are supplied with VJ3.1 are located in the
/vnmr/modules directory.

Figure 9 Modules in /vnmr/modules

Creating modules

Create modules using the make option of the module
command as follows:

1 Use the module command, the make option, and
arguments that include the module name and parameters
to add to the module. The following example creates a
module called demo_params that contains entries for
three parameters:

param_1, param_2, and param_3:

module(‘make’,’demo_params’,’param_1 param_2
param_3’)

2 Set parameter values using the modulename_module
macro. In the above example, the macro to load param_1,
param_2, and param_3 would be called
demo_params_module and the modulename_module macro
will be called when the module is loaded.

NOTE Generic_module template to build the module macro is available in
/vnmr/maclib.

Parameters and Data 5

VnmrJ 4 User Programming 479

Viewing modules parameters

The modules parameter holds the names of all modules
loaded in the current workspace. Enter modules? to display
the list of current modules.

To see which module parameters are used in the current
workspace use the module command, popup option, and the
module name as an argument.

module(‘popup’,’modulename’)

Module example—Och_adiabatic

Using the Och_adiabatic module as an example, the
modules can be used to add parameters for an adiabatic
180- degree pulse using the observe channel. The associated
Och_adiabatic_module macro parses the probe file, creates
the needed shape, and sets resulting parameter values into
the current experiment.

To implement a pulse sequence module:

1 Create the module:
module(‘make’,’modulename’,’parametrlist’)

2 Create the corresponding macro:
modulename_module macro

3 Add the new module name to the current list in the
modules parameter of the current workspace.

4 Use the Edit Parlib utility (Tools/Study Clones/Edit Parlib) to
create the protocol for the new pulse sequence. The list
of active modules will be shown in the Edit Parlib popup
and the active modules will be loaded when that protocol
is executed.

480 VnmrJ 4 User Programming

5 Parameters and Data

User-Written Weighting Functions

The parameter wtfile can be<XREF> set to the name of the
file containing a user- written weighting function. If the
parameter wtfile (or wtfile1 or wtfile2) does not exist, it
can be created with the following command:

create('wtfile','flag')
setgroup('wtfile','processing')
setlimit('wtfile',15,0,0).

If wtfile exists, but wtfile='' (two single quotes), VnmrJ
does not look for the file: wtfile is inactive. To enable
user- written weighting functions, set wtfile=filename,
where filename is the name of the executable weighting
function (enclosed in single quotes) that was created by
compiling the weighting function source code with the shell
script wtgen (a process described in the next section).

VnmrJ first checks if filename exists in wtlib subdirectory
of the user's private directory. If the file exists, VnmrJ then
checks if the file filename.wtp, which may contain the
values for up to ten internal weighting parameters, exists in
the current experiment directory. If filename.wtp does not
exist in the current experiment directory, the ten internal
weighting parameters are set to 1.

VnmrJ executes the filename program, using the optional
file filename.wtp as the source for parameter input. The
output of the program is the binary file filename.wtf in the
current experiment directory. This binary file contains the
weighting vector that will be read by VnmrJ. The total
weighting vector used by VnmrJ is a vector- vector product of
this external, weighting vector and the internal VnmrJ
weighting vector, the latter being calculated from the
parameters lb, gf, gfs, sb, sbs, and awc. The awc parameter
still provides an overall additive contribution to the total
weighting vector. Although the external weighting vector
cannot be modified with wti, the total weighting vector can
be modified with wti by modifying the internal VnmrJ
weighting vector.

If the filename program does not exist in a user's wtlib

NOTE Only a single weighting vector is provided for both halves of the complex
data set—real and imaginary data points of the complex pair are always
weighted by the same factor.

Parameters and Data 5

VnmrJ 4 User Programming 481

subdirectory, VnmrJ looks for a text file in the current
experiment directory with the name filename. This file
contains the values for the external weighting function in
floating point format (for example, 0.025, but not 2.5e–2)
with one value per line. If the number of weighting function
values in this file is less than the number of complex FID
data points (that is, np/2), the user- weighting function is
padded out to np/2 points, using the last value in the
filename text file.

Writing a weighting function

Weighting functions must follow this format, similar to
pulse- sequence programs:

#include "weight.h"

wtcalc(wtpntr, npoints, delta_t)

int npoints; /* number of complex data points */

float *wtpntr, /* pointer to weighting vector */

delta_t; /* dwell time */

{

... /* user-written part */

}

The variable wtpntr is a pointer and must be dealt with
differently than an ordinary variable such as delta_t.
wtpntr contains the address in memory of the first element
of the user- calculated weighting vector; *wtpntr is the value
of that first element. The *wtpntr++=x statement implies
that *wtpntr is set equal to x and the pointer wtpntr is
subsequently incremented to the address of the next element
in the weighting vector.

482 VnmrJ 4 User Programming

5 Parameters and Data

The following examples show the filename program set by
wtfile=filename.

Source file filename.c in a user's vnmrsys/wtlib directory:

#include "weight.h"

wtcalc(wtpntr, npoints, delta_t)

int npoints; /* number of complex data points */

float *wtpntr, /* pointer to weighting vector */

delta_t; /* dwell time */

{

int i;

for (i = 0; i < npoints; i++)

 *wtpntr++ = (float) (exp(-(delta_t*i*wtconst[0])));

/* wtconst[0] to wtconst[9] are 10 internal weighting */

/* parameters with default values of 1 and type float. */

}

Optional parameter file filename.wtp in the current
experiment directory:

0.35 /* value placed in wtconst[0] */

-2.4 /* value placed in wtconst[1] */

... /* etc. */

Text file filename in the current experiment directory:

0.9879 /* value of first weighting vector element */

0.8876 /* value of second weighting vector element */

–0.2109 /* value of third weighting vector element */

0.4567 /* value of fourth weighting vector element */

... /* etc. */

0.1234 /* value of last weighting vector element */

Compiling the weighting function

The macro/shellscript wtgen is used to compile filename as
set by parameter wtfile into an executable program. The
source file is filename.c stored in a user's vnmrsys/wtlib
directory. The executable file is in the same directory and
has the same name as the source file, but with no file
extension. The syntax for wtgen is wtgen(file<.c>) from
VnmrJ or wtgen file<.c> from a shell.

The wtgen macro allows the compilation of a user- written
weighting function that can subsequently be executed from
within VnmrJ. The shellscript wtgen can be run from within

Parameters and Data 5

VnmrJ 4 User Programming 483

a shell by typing the name of the shellscript file name,
where the .c file extension is optional. wtgen can also be
run from within VnmrJ by executing the macro wtgen with
the file name in single quotes.

The following functions are performed by wtgen:

• Checks for the existence of the bin subdirectory in the
VnmrJ system directory and aborts if the directory is not
found.

• Checks for files usrwt.o and weight.h in the bin
subdirectory and aborts if either of these two files cannot
be found there.

• Checks for the existence of the user's directory and
creates this directory if it does not already exist.

• Establishes, in the wtlib directory, soft links to usrwt.o
and weight.h in the directory /vnmr/bin.

• Compiles the user- written weighting function, which is
stored in the wtlib directory, link loads it with usrwt.o,
and places the executable program in the same directory.
Any compilation and/or link loading errors are placed in
the file name.errors in wtlib.

• Removes the soft links to usrwt.o and weight.h in the
bin subdirectory of the VnmrJ system directory.

The name of the executable program is the same as that for
the source file without a file extension. For example,
testwt.c is the source file for the executable file testwt.

484 VnmrJ 4 User Programming

5 Parameters and Data

User-Written

FID files

Introduce computed data into your experiment by using the
command makefid(input_file
<,element_number,format>). The input_file argument,
which is required, is the name of a file containing numeric
values, two per line. The first value is assigned to the X (or
real) channel; the second value on the line is assigned to the
Y (or imaginary) channel. Arguments specifying the element
number and the format are optional and may be entered in
either order.

The argument element_number is any integer larger than 0.
If this element already exists in your FID file, the program
will overwrite the old data. If not entered, the default is the
first element or FID. format is a character string with the
precision of the resulting FID file and can be specified by
one of the following:

If an FID file already exists, format is the precision of data
in that file. Otherwise, the default for format is 32 bits.

The number of points comes from the number of numeric
values read from the file. Remember that it reads only two
values per line.

If the current experiment already contains a FID, the format
and the number of points from that present in the FID file
cannot be changed. Use the command
rm(curexp+'/acqfil/fid') to remove the FID.

The makefid command does not look at parameter values
when establishing the format of the data or the number of
points in an element. Thus, if the FID file is not present, it
is possible for makefid to write a FID file with a header
that does not match the value of dp or np. Use the setvalue
command if any changes are needed as the active value is in
the processed tree.

'dp=n' single precision (16-bit) data

'dp=y' double precision (32-bit) data

'16-bit' single precision (16-bit) data

'32-bit' double precision (32-bit) data

Parameters and Data 5

VnmrJ 4 User Programming 485

The makefid command can modify data returned to an
experiment by the rt command, because after an rt, the
FID file in the current experiment, curexp+'/acqfil/fid',
may be a symbolic link only, pointing to the saved FID. So,
any change to the FID in the experiment will effectively
occur on the original, saved data. To avoid alteration of the
original data, enter the following sequence of VnmrJ
commands on the saved data before running makefid:

cp(curexp+'/acqfil/fid',curexp+'/acqfil/fidtmp')
rm(curexp+'/acqfil/fid')
mv(curexp+'/acqfil/fidtmp',curexp+'/acqfil/fid')

These commands ensure that the FID file in the current
experiment is not a symbolic link. The command
writefid(textfile<,element_number>) writes a text file
using data from the selected FID element. The default
element number is 1. The program writes two values per
line—the first is the value from the X (or real) channel, and
the second is the value from the Y (or imaginary) channel.

486 VnmrJ 4 User Programming

5 Parameters and Data

487

Agilent VnmrJ 4 User Programming
Reference Guide

Agilent Technologies

6
User Space Customization

Customize User Space with dousermacro 488

Customizing Default Experiment Parameters using user<pslabel> 489

Customizing Output - Plotting 490

488 VnmrJ 4 User Programming

6 User Space Customization

Customize User Space with dousermacro

A new command has been added to VnmrJ 3 which
increases the flexibility of the software on a per- user basis
by incorporating the concept of a “usermacro” feature into
many standard system macros.

When the dousermacro command is invoked with the ($0)
argument in any system macro, the user’s local macro
library is searched for a macro of the form
user<macroname>. If such a macro exists, it is executed at
that location in the parent macro.

For example:

• The useroperatorlogin and useroperatorlogout macros
are executed in the operatorlogin and operatorlogout
macros.

• The userbootup macro is executed in the system bootup
macro.

• The userprocess macro is executed in the system
process macro.

• The userplot macro is executed in the system plot
macro.

• The usergo macro is executed when an acquisition is
started.

For a complete list of dousermacro calls, in a terminal
window type:

grep dousermacro /vnmr/maclib/*

The dousermacro enhances the ability of users and operators
to individually change the behavior of their local account
without impacting other users while preserving the system
macros from modification.

User Space Customization 6

VnmrJ 4 User Programming 489

Customizing Default Experiment Parameters using user<pslabel>

Another place that the dousermacro philosophy is invoked to
allow easy, user specific customizations is the
dousermacro($seqfil) call that is made by the standard
experiment setup macro, cpsetup. By invoking the $seqfil
argument to the dousermacro command, the user’s local
macro library is searched for a user<pslabel> macro and, if
that macro exists, it is executed as part of the protocol
setup macro. This allows each user to customize the
behavior of each protocol in their user space without
affecting any other users or changing any systemfiles. For
example:

• Addition of a macro named userPROTON to the local
macro library allows the user to change the default set up
for PROTON in that user account. If the userPROTON
macro was simply set to nt=16, then every time PROTON
was added to a study or invoked in the current
workspace in that user’s account, the number of
transients would be set to 16.

• Creation of a usergHSQCAD macro in the local macro
library that read:

trace=’f1’ fn=4096 fn1=fn gaussian nt=4 ni=96
nullflg=’n’ mult=0

would set the display to show the heteronuclear axis
horizontally, set the Fourier number for f2 to 4096 points,
set the Fourier number for f1 equal to that of f2, calculate
the apodization function in both dimensions as a Gaussian
decay, set the number of transients to 4, set the number of
t1 increments to 96, turn off the TANGO gradient pulse
sequence element for suppression of 1- bond responses, and
turn off multiplicity editing for the gHSQCAD protocol in
this user account.

It is important to note that this user<pslabel> feature is
invoked in the individual protocol set- up macro. There is
no equivalent function for a cloned user study. Rather, each
individual protocol in such a study would be parameterized
as defined by the user<pslabel> macros.

490 VnmrJ 4 User Programming

6 User Space Customization

Customizing Output - Plotting

Individual plotting parameters for each protocol can be
adjusted at set- up by the creation of a <pslabel>_plot
macro in the user’s local macro library. For example:

• Creating a macro named CARBON_plot that contains
wc=wcmax-20 sc=10 would set the default width of all
CARBON plots to 20 mm less than the maximum width
available for the current plotter, and then set the starting
point of the plot to 10 mm from the right- hand edge of
the page.

User level, protocol- specific plotting can be automatically
invoked when a plot is generated by the use of the
pl_<pslabel> macro feature. Such a macro supersedes the
system plotting facility for that protocol. For example:

• Creation of a pl_DQCOSY macro in the local macro library
that read:

pcon(‘pos’,32) pcon(‘neg’,4) pap page

would produce a default plot of a DQCOSY spectrum that
consisted of 32 positive contours, 4 negative contours,
and a list of all parameters.

There is also a mechanism that allows individualized plotting
for a specific type of sample. For example, if a user wanted
to collect data on a number of samples containing a certain
molecule and then plot those results in a format specific to
those samples. For example, let’s assume that a user
wanted to create a specific experiment to investigate
ibuprofen. The procedure to do so would be:

• Set up all acquisition parameters as desired for the
analysis, collect a spectrum on a representative sample of
ibuprofen using those parameters, and load that data set
into the current workspace.

• Next, create a macro that when executed on the command
line generates a plot as desired, including text,
integrations, inset regions, etc. For this example, let’s
assume that this plotting macro is called ibuprofen_1.

• Create the execplot parameter by typing
create(‘execplot’,’string’) on the command line.

• Set the value of the new execplot parameter to
ibuprofen_1 by typing execplot=ibuprofen_1 on the
command line.

User Space Customization 6

VnmrJ 4 User Programming 491

• Use the Edit Parlib tool to create a new protocol called
Ibuprofen and include the parameter execplot in the
lock parameters field.

A new button named “Ibuprofen” will appear in the
experiment selector corresponding to the current experiment
and, when executed, this protocol will set up an experiment
using the current parameters and use the macro
ibuprofen_1 to control plotting output.

492 VnmrJ 4 User Programming

6 User Space Customization

493

Agilent VnmrJ 4 User Programming
Reference Guide

Agilent Technologies

7
Panels, Toolbars, and Menus

Parameter Panel, Toolbar, and Menu Properties 494

Using the Panel Editor 495

Panel Elements 508

Creating a New Panel 534

Panel Style Guidelines 540

Graphical Toolbar Menus 545

494 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Parameter Panel, Toolbar, and Menu Properties

The parameter panels as well as vertical panels, menus, and
most toolbars in VnmrJ are built using xml files that are
stored in the /vnmr/templates directory. While parameter
panels are saved under
templates/layout/NAME_OF_PULSESEQUENCE, vertical panels
are saved under templates/layout/toolPanel.The System,
User, Hardware Toolbar and all Menu files are stored in
templates/VnmrJ/interface.

An exception is the Graphical Toolbar: being a descendant of
the Vnmr tool menu (which used to reside in
/vnmr/menulib), its files are of similar MAGICAL build and
are stored in /vnmr/menujlib.

Parameter panel items may display strings, expressions, and
parameter values. Some parameter panels are general and
are shared with all pulse sequences and some are
customized to meet the requirements of individual pulse
sequences.

The liquids and solids interfaces use panels in the Start,
Acquire, and Process folders. The imaging interface has an
additional folder labeled Image. The LC- NMR interface has
an additional folder labeled LC/MS. Panels are selected by
clicking on the tab at the top of the window. Each panel
contains a number of pages, and the pages are selected by
clicking on the page tab at the left.

Panels in the Spectroscopy and LC- NMR interfaces use the
name of the pulse sequence, seqfil. Imaging interface
panels utilize the parameter layout to select the panels that
need tp be displayed. The imaging gems protocol sets layout
= 'gems'. The parameter can be set to layout = seqfil.
Using the layout parameter facilitates sequence
development; a panel does not have to be created because a
sequence is recompiled under a different name.

To determine whether 2D- type rather than the default
1D- type panels should be displayed, a file "DEFAULT" is
copied to the panel directory. See “Files associated with
panels” on page 537 for more information.

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 495

Using the Panel Editor

The Panel Editor is used to customize parameter panels in
the VnrmJ interface, as described in the sections:

“Starting the panel editor” on page 495

“Editing existing panel elements” on page 497

“Adding and removing panel elements” on page 499

“Adding user- defined sampletags” on page 502

“Saving panel changes” on page 504

Starting the panel editor

1 Click Edit on the main menu.

2 Select Parameter Pages… to display the Panel Editor
window. See Figure 10.

Figure 10 Panel Editor window

496 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

3 The current page is displayed in the edit mode with a
grid. See Figure 11.

Figure 11 Panel and Locator when Panel Editor is Open. The default grid
size is 5.

4 Click Tools.

5 Select Locator to display the locator panel (Figure 11), and
the basic elements used to build a panel.

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 497

Editing existing panel elements

Selecting a panel element

To select a panel element:

1 Double- click an element (button, toggle, group, etc.) to
select it. The selected element is highlighted in yellow and
is ready for editing.

2 Double- click an empty area within the group to select a
group.

3 Double- click an empty area within the page to select a
page.

4 Double- click an empty area outside a page to select a
folder.

5 Expand the panel display area until it is larger than the
page if there is no area outside the page.

Viewing or changing a panel element attribute

The panel editor displays the attributes of a selected
element. A list of elements and their attributes is given in
Panel Elements. The panel editor can also set the following
attributes:

Style The Style drop- down menu sets the font, style, size,
and color of the element.

498 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Background color The Background Color drop- down menu
sets the background color of the element.

Location Move an element to a new location using one of
the following methods:

• Drag the element to the desired location with the mouse.

• Use the arrow keys to move the element to the new
location.

• Enter the position in the entry boxes X (horizontal) and Y
(vertical) in pixels. The top left corner is X=0, Y=0.

Size Resize an element using one of the following methods:

• Drag the edges of the element with the mouse.

• Hold the control key down and resize the element using
the arrow keys.

• Enter the size in the entry boxes W (Width) and W
(Height) in pixels.

• Copy an element to a location on the page and press
Enter.

Changing the grid size

The default grid size is 5. The grid size can be changed as
follows:

1 Enter a new value in the field next to Grid Size.

2 Press Enter.

Editing styles

The Edit Styles button opens the Displapy Options editor.

The editor is used for setting the styles of panel elements.

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 499

Changing the font, style, size, or color in Display Options
changes all elements in the interface of that style.

Adding and removing panel elements

Selecting an element from the locator

1 Select an element in the Locator.

2 Drag the element from the locator to the desired position
on the page.

Copying an element to another location on the same page

1 Select an existing element or group of elements by
double- clicking it (make sure the borders are highlighted).

2 Hold the control key down and drag it to the new
location–a new element is automatically created.

Copying an element between pages within a folder

1 Select an existing element or group of elements on a page
by double- clicking it (make sure that the borders are
highlighted).

2 Hold the control key down and drag it to a location
outside the page. Use the arrow keys to move the copy
outside the page if the area outside the page cannot be
viewed.

3 Select a new page to the left in the page tab list.

4 Move the copied element within the new page.

500 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Creating a new page from the Locator

1 Select Show all elements in the Locator.

2 Find the page element in the Locator.

3 Drag the page element into the parameter panel or into
the tab list to the left of the parameter panel in the
appropriate folder.

New Page appears as the tab on the left.

4 Change the position and size of the page using one of the
following methods:

a Use the mouse buttons to click on an edge or corner
and drag the page to a new size.

b Use the ctrl- arrow keys to resize the page.

c Type in values for width (W) and height (H) in the
template editor.

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 501

Copying an existing page from the Locator

1 Set the columns of the locator to show type, directory, and
filename.

2 Find the required page in the Locator.

3 Drag the page in to the tab list to the left of the panels
in the appropriate folder.

The page will appear as a new tab in the list.

Removing panel items

1 Select the panel element, group, page, or folder to remove
by double- clicking it.

2 Click the Clear button at the lower right corner of the
template editor. This removes all items from the
page or folder, or deletes the selected item or group
(highlighted with yellow border).

The item can also be dragged to the trash.

Using the Item Editor

The Item Editor can be used to edit individual visual
elements, composite elements or complex groups and pages.

To open the Item Editor,

1 Click Edit on the main menu.

2 Select Parameter Pages… to display the Panel Editor
window. See Figure 10.

3 In the Panel Editor window, click Edit Items. The Item
Editor window appears. See Figure 12 on page 502.

502 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

4 The Item Editor supports the following

• Drag items to the work area from the Locator or
Browser

• Move items to and from the work area from the
standard panels area using drag and drop, copy- drag
and drop

• Right- click a selected item, and use the pop- up menu
to cut, copy, or paste. Accelerator key shortcuts for
these menu items are available by pressing ctrl- x,
ctrl- c, and ctrl- p on your keyboard.

• The properties and attributes of items selected in the
Item Editor can be modified and saved as “panelitems”
in the same way that these operations are supported
for objects selected in the previous editable areas.

5 Click Save to save the sets of items in the Item Editor
work area.

6 Click Open to open a previously- saved set of items.

Adding user-defined sampletags

A sampletag is a parameter that is tightly associated with a
given Study. While many common parameters are already
included in the list (e.g., samplename, sampleowner,
studyowner, emailaddr, researcher, etc.), it is expected that
users may want to add local, site- specific sampletags for
their data. Global parameters should not be used as

Figure 12 Item Editor window

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 503

sampletags.

How to add a sampletag

As an example for how a new sampletag would be created
and used, assume that you want to create a new sampletag
called faculty_name. The procedure for this is as follows:

1 On the command line, type:
create(‘faculty_name’,’string’)
faculty_name=’Prof1’ to create the faculty_name
variable, then fill that variable with the value ‘Prof1’.

2 Next, open the Preferences panel (Edit > Preferences) and
click the SampleTags tab.

3 Under UserSamp Tags, add the parameter faculty_name to
the list and click Save sample tags. This adds the new
parameter to the sampletags list.

The value of the new sampletag will now be stored with
every Study, even if that value is an empty string.

How to add a sampletag to the template

A common reason for creating a new sampletag is the desire
to customize the data- save templates. Once the new
sampletag is available, the process to add it to the template
is straightforward. Continuing with the faculty_name
example (“How to add a sampletag” on page 503):

1 Open the Preferences panel (Edit > Preferences) and click the
SampleTags tab. Add /$faculty_name$ to the study
directory template. Often, this might be just before a
/$studyowner$ variable. This will create a new directory,
as needed, based on the values of faculty_name and
studyowner, for each study that is collected in automation
(e.g., a folder for each faculty member, with subfolders for
each student inside the faculty folders).

Each time someone attempts to run an experiment, the
system will now pop up a window and make them fill in
a value for faculty_name (assuming that they did not
populate this variable before submitting their experiment).

2 An alternative approach would be to select Edit >
Preferences and add faculty_name to the
UserPrefsRememberance list under the UserPref tab. Once
each operator uses the Edit > Operator Preferences pop- up to
fill in a value for faculty_name, the system will store
that value for each operator and automatically populate
it.

504 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

3 An additional solution would be to add a widget to the
interface that displays the new variable and allows users
to change that variable on a per- sample basis. There are
two ways to do this:

a A Simple Entry Field Swap: In the Study Queue, click
New Study and then select Edit > Parameter Pages. This
opens the panel editor tool (Equation 10 on page 495).
For more information, see “Using the Panel Editor” on
page 495. For this example, the simplest option is to
replace an unused field in the current panel with the
new parameter name. For example, double- click on
the label for “Notebook:” and change the value of
“Label of item” in the panel editor to “Faculty:”. Next,
double- click on the entry field next to the label in the
panel and change the variable notebook to
faculty_name in all three places it appears on the
panel editor. Finally, double- click on the outermost
blue box in the panel to select the entire group, select
“save” from the lower left- hand side of the panel
editor, and close the panel editor. The panel will now
show a field containing the value of faculty_name and
allow users to enter this parameter as needed.

b Create a Drop- down Menu Item: This requires a more
in- depth understanding of the parameter panel editing
tools. In short, a menu item can be added to the
standard panel as described in part a., but rather than
just recycling a fixed entry field, a new “filemenu” field
can be created. This would allow users to select the
value for faculty_name from a drop- down list that is
maintained by the administrator. The “solvents” menu
item can be used as an example.

Saving panel changes

Saving element or group changes

1 Double- click on an element or group.
The Save button is followed by the element type, an entry
field for specifying the name of the saved element, and is
grayed out until a name is specified.

2 Enter a name and press Enter.
The group, including all elements within the group, is
saved when saving a group. See Table 2 for saving
locations.

3 Select a choice from the Type menu to set the element
type.

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 505

The element type may be used for searching for all
elements of this type in the Locator. It does not impose
any restrictions on the use of the element.

4 Press the Save button to save the element or group.

5 To reload an element or group from disk, press the Load
button.

A panel item may be saved in one folder using this method
and copied into another folder by dragging it from the
Locator.

Saving page changes

Double- click on an empty space within a page, or click on a
tab on the left to select a page.

1 The Save button is followed by Page, an entry field for
specifying the page name, and is grayed out if no name is
specified.

2 Enter a name and press Enter.

3 Select a choice from the Dir menu.

Selecting a pulse- sequence name or layout saves the page
in a directory for the pulse sequence or layout. Saving to
a default directory makes it available to all sequences.

The default directory is default_name if the file DEFAULT
exists in the directory and contains set default
default_name. Otherwise, the default directory will be
default. The directory for many 2D liquids sequences is
default2d.

4 Select a choice from the Type menu to set the page type.

The page type is used for searching all pages of this type
in the Locator. It does not impose any restrictions on the
use of the page.

5 Press the Save button to save the page in the layout
directory.

6 Press the Load button to reload a page from disk.

Saves the element or group under the name
in the panelitems directory. The page then
has a reference to the named item within it.

Loads the element or group using the file
name in the element or group entry field.

506 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Saving folder changes

Double- click the area outside a page. Expand the panel
display area until larger than the page if no area is
available.

1 The Save button is followed by Folder and an entry field
for specifying the folder name. The folder name must be
one of the system types: sample, acq, proc, or aip if
Imaging.

2 Select a directory to save the folder in the Dir menu.

The folder is saved in a directory for the pulse sequence
or layout if a pulse- sequence name or layout is selected.
Select default to save it in the default directory available
to all sequences.

The default directory is default_name if the file DEFAULT
exists in the directory and has contents set default
default_name. Otherwise, the default directory will be
default.

3 Select a choice from the Type menu to set the folder type.

The folder type may be used for searching for all folders
of this type in the Locator. It does not impose any
restrictions on the use of the folder.

4 Press the Save button to save the folder specifying the
order of pages in it.

5 Press the Load button to reload a folder from disk.

Exiting the Panel Editor

Use one of the following options to exit the panel editor:

Exit and temporarily save changes

1 Click the Close button.

2 Changes are saved and retained only for the current
VnmrJ session. Changes are lost when VnmrJ is exited.

Exit and apply or abandon changes

Apply the changes to the current VnmrJ session, save the

Closes the panel editor; unsaved changes
are retained only for the current VnmrJ
session. Changes are not saved when VnmrJ
is exited.

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 507

changes for the next VnmrJ session, or abandon the changes
as follows:

1 Double- click an element or group. The Save button is
followed by the element type and an entry field for
specifying the name of the saved element. Save is grayed
out until a name is specified.

2 Enter a name and press Enter. The group, including all
elements within the group, is saved when saving a group.

3 Select a choice from the Type menu to set the element
type. The element type may be used for searching for all
elements of this type in the Locator. It does not impose
any restrictions on the use of the element.

4 Do one of the following:

• Press the Save button to save the element or group.

• Exit and make no changes. Click the Abandon button to
exit and make no changes.

5 Press the Load button to reload an element or group from
disk.

6 Click the Close button to exit the panel editor.

Saves the element or group under the name
in the panelitems directory. The page then
has a reference to the named item within it.

Exits the panel editor, discards unsaved
changes, and reloads previously saved
pages.

Loads the element or group using the file
name in the element or group entry field.

508 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Panel Elements

This section describes how to add and modify panel
elements.

Element style

The font style (plain, bold, italic, bold- italic), size, font, and
color that are selected in the Style section at the top of the
panel editor window determine the appearance of the text
associated with the element. The specifics of an element
style can be modified by clicking Edit Styles in the panel
editor window or by selecting Display Options… from the top
menu Edit.

Changing the appearance of a given style will immediately
affect any existing elements that use that style.

Panel element attributes

Commonly used panel element attributes are listed in
Table 59.

Table 59 Common Attributes of Panel Elements

Attribute Description

Label of item Text label of item.

Icon of item Icon of item. This is used only for some elements (button,
label).

Label
justification

Justification of label of item. Choices are Left, Right, and
Center.

Vnmr variables VNMR parameters that can change the Value of item, Enable
condition, or Show condition of the item.

Value of item The value of the item. This string is a MAGICAL expression
that sets the value of $VALUE. The value of some items
(check box, radio, toggle) can be either true (1) or false (0).
Other items (comboboxbutton, menu, selmenu) match a
value from the Value of choices. For other items (entry,
textmessage), it is a number or string to display.

Decimal Places The number of decimal places to truncate to in a real
expression in Value of item.

Vnmr command The command sent when the item is executed or selected.
This string is a MAGICAL expression that can use $VALUE,
which is read from the value entered in or set by the item.

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 509

Vnmr command2 The command sent when the item is deselected. This is
used only by some items (check box, radio, toggle).

Enable condition The expression that determines whether an item is active or
not. This string is a MAGICAL expression that sets
$ENABLE or $VALUE, which can evaluate to either active
(1), inactive (0), or disabled (-1). A disabled item does not
allow the item to change the parameter value, while an
inactive item simply changes the background color but still
allows parameter entry.

Label of choices Text labels used in a menu or comboboxbutton.

Value of choices Values in a menu or comboboxbutton used to set the Vnmr
command.

Status
parameter

Parameter from the acquisition or hardware status. A status
parameter can change the item or value of the item to
display. Status parameters cannot be used in combination
with MAGICAL expressions. They are mutually exclusive
from Vnmr variables.The status parameter is any of the
names listed by the command Infostat.

Show condition The expression that determines whether a group is shown or
not. This string is a MAGICAL expression that sets the value
of $SHOW or $VALUE, which evaluates to show (1) or hide
(0).

Vnmr command
on show

In a group, the command sent when the group is shown.
This string is a MAGICAL expression.

Vnmr command
on hide

The command sent when the group is hidden. This string is a
MAGICAL expression.

Editable Sets whether or not text may be entered in the item (yes or
no).

Table 59 Common Attributes of Panel Elements

510 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Panel elements

Button

A button causes an action to occur in VnmrJ. The command
behind a button is anything that can be written in a macro
or entered on the command line.

The button attributes are:

• Label of item

• Icon of item

• Enable condition

• Vnmr command

• Background color

• Vnmr variables— enable/disable a button based on the
parameter value.

• Status parameter—enable/disable a button based on the
status parameter value.

• Enable status values— list of status parameter values that
enable the button.

Example: The Acquire Profile button in the sems layout is a
button.

Attribute Value

Label of item Acquire Profile

Icon of item

Vnmr variables

Enable condition

Vnmr command au

Status variables

Enable status values

Background color transparent

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 511

Check

The check box element selects and deselects some mode or
state, often as a yes or no selection. It is presented as a
small square box to the left of a label.

The attributes of a check box are:

• Value of element — the check box is checked if $VALUE
evaluates to a positive integer.

• Enable condition

• Vnmr command

• Vnmr command2

Example: Inversion Recovery is a check box .

The commands in the Vnmr command and Vnmr command2
fields are executed when the check box is selected or
deselected. The parameter ir is set to y when the box is
selected, and when the box is deselected, ir is set to n.

The Value of element field determines, based on the current
value of ir, whether the check box is shown as selected or
deselected. Thus, this element needs to "listen to" the
parameter ir, which requires ir to be in the Vnmr variables
list.

Vnmr command and the Value of element must be consistent.

Label of Item Inversion Recovery

Vnmr variables: ir

Value of element: $VALUE = (ir='y')

Vnmr command: ir='y'

Vnmr command2: ir='n'

512 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Comboboxbutton

The comboboxbutton button provides a number of choices
using a drop- down menu. Selecting an option from the menu
sets the menu item. The Vnmr command is executed by
clicking the button, which is specified in the menu, while a
menu type button executes the command already after the
selection has been made.

The attributes of a comboboxbutton are:

• Label of item

• Vnmr variables

• Value of item

• Enable condition

• Vnmr command

• Label of Choices

• Value of Choices

• Editable

An example is a comboboxbutton that displays the number of
complex transform points fn/2:

Attribute Value

Vnmr variables fn

Value of item $VALUE = fn/2

Enable condition on('fn'):$ENABLE

Vnmr command fn = $VALUE * 2

Label of Choices "64" "128" "256" "512" "1024"
"2048"

Value of Choices "64" "128" "256" "512" "1024"
"2048"

Editable Yes

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 513

Entry field

Use the entry element to directly enter values for VnmrJ
parameters.

The entry field attributes are:

• Vnmr Variables

• Value of item

• Enable condition

• Vnmr Command

• Decimal places

• Disable style

• Status parameter

The number of transients or averages, nt, is an example:

The entry field created in the above example functions as
follows after exiting the editor:

Enter a value into the entry field, for example, 4.

Enter a list of values into an entry field a parameter that
can be arrayed (nt=1,1,1,1,1). The value is displayed as the
string array.

String parameters require enclosing the $VALUE with quotes:
n1='$VALUE. All math functions must be done to a value
prior to assigning it to a VnmrJ parameter, for example, te
in the imaging interface:

Vnmr Command: te = $VALUE/1000

Entering a list of values for te in this case, for example, 10,
20, 30, 40, results in dividing only the last value by 1000
and the array ends up with the values 10, 20, 30, 0.04.

Attribute Value

Vnmr Variables: nt

Value of item: $VALUE = nt

Enable condition

Vnmr Command: nt = $VALUE '

Decimal places:

Disable style:

Status parameter:

514 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Enclose $VALUE in square brackets, [] to force the math to
be applied to all entered values.

Vnmr Command: te = [$VALUE]/1000

The value is correctly divided by 1000 for all entered values.

This is only an issue for entry fields which allow arbitrary
values. The options for the entered value are predefined for
menus, check boxes, etc.

Depending on the Enable condition, entries have a different
appearance: they are either active ($ENABLE=1, left in the
picture), inactive (0, middle), or disabled (- 1, right). A
disabled entry does not allow the item to change the
parameter value, while an inactive item simply changes the
background color but still allows parameter entry.

Group

Groups are used to delineate a collection of basic elements
that are connected. There are four types of groups: Major,
Minor, Titled, and Untitled.

Group attributes are:

• Label of item

• Vnmr variables

• Show condition

• Vnmr Command on Show

• Vnmr Command on Hide

• Type

• Number of Layers

• Edit Layer

• Background Color

• Tab to this Group Disabled

• Override Panel Enabled

While Major and Minor groups exist mainly because of legacy
and compatiblilty reasons, the main difference is whether a
group shows a title (if a title was entered) or not.

Major groups are outlined with a visible border and can
have a label associated at the top of the group.

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 515

Minor groups can have a label but it is not displayed..

Groups can be surrounded by a border that can be either
Etched, RaisedBevel, or LoweredBevel, see below for
examples. The default for groups other than Major is no
border.

Figure 13 Group types shown for six copies of the same group. First row,
left to right: No border/Titled, No border/Untitled, Etched
border/Untitled. Second row: Etched/Titled,
RaisedBevel/Titled, LoweredBevel/Titled.

Panel groups may also be mutable. Their contents can
change depending on other parameters. Multiple layers are
available. Set the number of layers > 1 to enable this
property. Use the editor to select the current active for
editing. Mutable.

Populate a group by first placing the group on the page,
sizing it to hold all the elements to be added to it, and
placing the individual elements inside the group.

A group cannot be created around existing elements. Placing
a new (empty) group on top of existing elements gives the
appearance of placing those elements in the group but none
of the elements can be selected because they are behind the
group. A group cannot be resized to encompass neighboring
elements. Place elements inside a group by moving the
elements into the group one by one.

An element within a group cannot be resized so that the
element extends beyond the group. An element that extends
beyond the group is no longer considered part of the group
and it cannot be selected from within the group. The
element must reside inside the group. The group cannot be
moved or resized to cover the element.

Groups can be hidden using Show Condition as false. False
is a negative integer or 0; true is a positive integer. For
example, a group might only be suitable for display if the

516 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

parameter relax is set to 'y'. In this case, the value of the
Show Condition can be calculated by a MAGICAL expression,
for example:

"if relax='y' then $SHOW=1 else $SHOW=0 endif"
alternatively,
''$SHOW=(relax='y')''

For this attribute, $SHOW is equivalent to $VALUE, and either
may be used.

The same space on the page can be used for different groups
having a functionality determined by the value of a
parameter. Editing this type of group is best done by
separating the groups on the page and at the end of the
editing process repositioning the groups on top of one
another. It is important, in this case, that the groups not fit
within each other.

Groups can have multiple layers, hidden (muted) or shown,
depending on the show condition for a particular layer.
Number of Layers sets the number of layers in a group. Edit
Layer is the number of the layer being edited between 1 and
the number of layers. To jump to and edit another layer,
first select/ double- click the main panel frame surrounding
all, then enter a different layer number to be edited next.

Figure 14 "Spin/Temp" Panel with three layers, layer 1 is currently open
in the panel editor. Note the additional panel group (currently
yellow/selected)

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 517

Label

The label element is a non- interactive label with a
pre- defined text. Labels are typically used to give a title, or
a description of some other field.

The attributes of a label are:

• Label of item

• Icon of item

• Vnmr variables

• Used for setting the Enable condition

• Enable condition

• Changes label's appearance, but cannot make it invisible.
Put the label in a group and set the show condition on
the group to make the label invisible.

• Label justification

Example: Transform size in front of an entry field for entering
the number of transformed points.

Menu

The menu element gives a number of choices in a drop- down
menu. Selecting an option from the menu executes the
specified Vnmr command, and displays the last selected
option in the menu.

The attributes of a menu are:

• Value of element

• Enable condition

• Vnmr command

• Label of choices

• Value of choices

• Editable

Attribute Value

Label of item Transform size

Icon of item

Vnmr variables

Enable condition

Label justification Left

518 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

The menu for np in which the value displayed is the number
of complex pairs, that is, np/2 is an example:

The menu displays and returns the number of complex pairs
and the value of np is adjusted through multiplying and
dividing by 2. To illustrate that the "Label of choices" and
"Value of choices" do not need to be identical, an alternative
implementation would be to have the menu return the
number of data points but display the number of complex
pairs:

A value not included in the list of choices can be typed in if
the menu is editable. The typed- in value is added to the list
of label choices and to the list of value choices.

Parameter

The parameter element offers a combination of a label, a
check box, an entry field, and a menu (typically used for
selecting the units of the parameter in question). Each of
these sub- elements is optional. The elements within a
parameter are:

Attribute Value

Vnmr variables np

Value of element $VALUE = np/2

Vnmr command np = $VALUE*2

Label of choices "32" "64" "128" "256" "512" "1024"

Value of choices "32" "64" "128" "256" "512" "1024"

Attribute Value

Value of element $VALUE = np

Vnmr command np = $VALUE

Label of choices "32" "64" "128" "256" "512" "1024"

Value of choices "64" "128" "256" "512" "1024" "2048"

Parameter element
function

Description

Label Style permits changing font and units.

Check box Enables or disables selected conditions.

Entry field Enter a value with optional decimal places

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 519

Entry Size and Unit Size establish the size of the label box, and
Units Label adds the required unit's description at the end of
the box.

The label and menu have the same font.

The following example uses fixed units. Type Label.

Units Label for parameter units. Selected from a menu
is optional.

Attribute Value

Parameter Name: temp

Label of item: Temperature

Enable Condition: vnmrinfo('get','tempExpControl'):$t
c=0 then $ENABLE=-1 else on
('temp'):$ENABLE endif

Vnmr variables: temp tin

Checkbox Enable
Condition:

vnmrinfo('get','tempExpControl'):$t
c $ENABLE=$tc*2-1

Checkbox Value: on('temp'):$VALUE

Checkbox Vnmr
Command:

on('temp') tin=Y

Checkbox Vnmr
Command2:

off('temp') tin='n'

Entry value: $VALUE=temp

Entry size: 80

Entry Vnmr
Command:

temp=$VALUE tin=Y

Entry Decimal Places: 1

Entry Disable Styles: Grayed out

Units Enable: Label

Units size: 30

Units Label: C

Units value:

Units Vnmr
Command:

Menu Choice Label:

Menu Choice Value:

520 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Attribute Value

Parameter Name: d1

Label of item: Relaxation Delay

Enable Condition: $SHOW=1

Vnmr variables: d1

Checkbox Enable Condition :

Checkbox Value:

Checkbox Vnmr Command:

Checkbox Vnmr Command2:

Entry value: vnmrunits('get','d1'):$VALUE

Entry size: 50

Entry Vnmr Command: vnmrunits('set','d1',$VALUE)

Entry Decimal Places: 2

Entry Disable Styles: Grayed out

Units Enable: Menu

Units size: 10

Units Label:

Units value: parunits('get','d1'):$VALUE

Units Vnmr Command: parunits('set','d1','$VALUE')

Menu Choice Label: 's''ms''us'

Menu Choice Value: 'sec''ms''us'

Radio button

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 521

Radio button

Radio buttons are used when a few mutually exclusive
choices are available for a particular state. Whenever one
option is selected, the others are deselected. If there are
more than 3- 4 choices, a menu is a better element to use.

A collection of radio buttons related to a particular
parameter must be within a single group to separate them
from other sets of radio buttons, even if the groups of radio
buttons use different parameters. The radio buttons must be
explicitly programmed to be mutually exclusive.

The attributes of a radio button are:

• Label of item

• Vnmr variables

• Value of element

• Enable condition

• Vnmr command

• Vnmr command2

An example of two radio buttons is the selection of either
chess or wet water suppression method in the steam protocol.
The chess and wet buttons have the following attributes:

Vnmr command2 is not used.

This example also shows an example of using the Enable
condition to gray out the radio button if water suppression
(ws) is turned off altogether (ws = 'n').

Attribute Chess WET

Vnmr variables wss wss

Value of element $VALUE=(wss='chess') $VALUE=(wss='wet')

Enable condition $VALUE=(ws='y') $VALUE=(ws='y')

Vnmr command wss='chess' wss='wet'

522 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Scroll

The scroll element adjusts a parameter with increment and
decrement buttons (typically up and down arrow scroll
buttons respectively). The parameter's current value is
displayed to the left of the scroll buttons. Each click of the
left mouse button on an arrow selects a new value for the
parameter in the direction implied by the button to the
current parameter. Changes in the parameter, from value to
value, do not have to be equally spaced. The parameter value
can be a number or a string. “Spinner” on page 524 is
similar and does require a defined step size.

The attributes of a scroll are:

• Vnmr variables

• Value of element

• Enable condition

• Vnmr command

• Value of choices

An example is the selection of a decoupling modulation
mode from a defined list:

Selmenu

The selmenu (select menu) element is similar to a menu and
gives a number of choices in a drop- down menu. The
difference between a menu and a selmenu is that the
selmenu always displays the same text (the "Label"),
regardless of what was last selected. The exception to this is
if the selmenu is "Editable", in which case it displays the last
selected option.

The attributes of a selmenu are the same as for a menu.

Attribute Value

Vnmr variables dmm

Value of element $VALUE = dmm

Enable condition

Vnmr command dmm = '$VALUE'

Value of choices "ccc" "ccw" "ccg"

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 523

Slider

The slider element adjusts a parameter with a slider. The
current value of the parameter is displayed to the left of the
slider. The value is incremented by clicking the left mouse
button or decremented by clicking the right mouse button in
the scale or dragging the slider to the right (increase) or to
the left (decrease). The value can also be set by entering it
in the entry box to the left of the slider.

The attributes of a slider are:

• Vnmr variables

• Value of element

• Enable condition

• Vnmr command

• Status parameter

• Limits parameter

• Min displayed value

• Max displayed value

• Coarse adjustment value

• Fine adjustment value

• Number of digits to display

• Ms between updates while dragging

The limits parameter is a Vnmr parameter name used to
control the range of the slider.

The Min/Max displayed value entries control the range of the
slider. These entries are inactive when there is an entry in
the status parameter box and the limits box.

The Coarse/Fine adjustment values establish how much the
value changes when the slider is moved by clicking the right
or left mouse button in the scale.

Ms between updates while dragging establishes the delay in
reacting to the slider.

524 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Example:

Spinner

The spinner element applies a defined stepsize change to the
value of a parameter using increment and decrement buttons
(typically up and down arrow buttons). The range of values
is set by the minimum and maximum displayed value
attributes. “Scroll” on page 522 is similar but does not
require a defined stepsize.

The attributes of a spinner are:

• Vnmr variables

• Value of item

• Enable condition

• Vnmr command

• Status parameter

• Limits parameter

• Min displayed value

• Max displayed value

• Mouse click adjustment value

Attribute Value

Vnmr variables

Value of element

Enable condition

Vnmr command setshim ('Z0',$VALUE)

Status parameter Z0

Limits parameter Z0

Min displayed value

Max displayed value

Coarse adjustment value 10

Fine adjustment value 1

Number of digits to display 6

Ms between updates while
dragging

0

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 525

Example:

Textmessage

The textmessage element displays a non- interactive label
that displays an expression and the current value of the
expression. The display is updated if the expression's value
changes. The expression can not be changed using this
element.

The attributes of a textmessage are:

• Status parameter to display

• Vnmr Variables

• Enable condition

• Vnmr expression to display

• Number of digits

Example:

Attribute Value

Vnmr variables vtairflow

Value of item $VALUE = vtairflow

Enable condition $SHOW = (vtairflow>6)

Vnmr command

Status parameter

Limits parameter

Min displayed value 7.0

Max displayed value 25.0

Mouse click
adjustment value

1.0

Attribute Value

Status parameter to
display

Vnmr Variables np

Enable condition

Vnmr expression to
display

$VALUE = np/2

Number of digits 0

Toggle button

526 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Toggle button

A toggle button is used to execute one action when the
button is selected and another action when the button is
deselected. Clicking the toggle button runs an action, and
the button changes to appear pressed in. Clicking the button
again runs the other action, and the button is released. An
example of such a toggle button is FID shimming, which
starts FID shim acquisition until the button is clicked a
second time to abort acquisition.

A different use for a toggle button is in switching between
two mutually exclusive states, such as inserting or ejecting a
sample. For this usage, two or more toggle buttons are
placed within a group.

The attributes of a toggle button are:

• Label of item

• Vnmr variables

• Value of item

• Enable condition

• Vnmr command
(executed when the button is selected)

• Vnmr command2
(executed when the button is deselected)

• Status variables

• Selecting status values

• Enabling status values

Example:

 Button 1 Button 2

Label of item Insert Eject

Vnmr variables

Value of item

Enable condition

Vnmr command

Vnmr command2

Status variables air air

Selecting status values insert eject

Enabling status values eject insert

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 527

Advanced panel elements

The advanced panel elements are described here and are
accessed using the Locator.

Dial

A dial is a non- interactive display of the value of any
parameter. It is typically used to display the FID area while
shimming or setting the lock. A parameter cannot be set
using the dial.

The attributes of a dial are:

• Vnmr variables

• Value of item

• Enable condition

• Status variable

• Min value

• Max value

• Max value elastic

• Number of hands

• Digital readout

• Show max value

• Max marker color

• Show pic slice

• Show color bars

Example:

Attribute Value

Vnmr variables fidarea

Value of item $VALUE = fidarea

Enable condition

Status variable

Min value 0.0

528 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Filemenu

A filemenu is used when the choices and values associated
with a menu are given in a file. This is useful for having a
dynamic menu, in which entries may be added or removed
(typically by macros) during a session. The filemenu contains
pairs of strings on multiple lines. Spaces in strings are
contained within double quotes.

The attributes of a filemenu are:

• Label of item

• Selection variables

• Content variables

• Value of item

• Enable condition

• Vnmr command

• Menu source

• Menu type

• Show dot files

An example of a filemenu is the orientation menu in Plan
page in the Imaging interface, in which the orientation of
previously acquired data is dynamically added to the
orientation menu during a study:

Max value 1000.0

Max value elastic no

Number of hands 2

Digital readout yes

Show maximum value yes

Max marker color GraphForeground

Show pie slice yes

Show color bars yes

Attribute Value

Label of item

Selection variables orient planValue

Content variables sqdir studyid

Value of item $VALUE = planValue

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 529

Page

The page element has the same attributes as a group
element, with a size of a whole page and "Tab to this Group"
enabled. The page size may be changed for particular use.
The position of the page should always be X=0, Y=0. See the
description of the group element for further details.

Page attributes are:

• Label of item

• Vnmr variables

• Show condition

• Vnmr Command on Show

• Type

• Vnmr Command on Hide

• Number of Layers

• Edit Layer

• Background Color

• Tab to this Group Enabled

• Override Panel Enabled

Selfilemenu

The selfilemenu element is similar to a filemenu and gives a
number of choices in a drop- down menu. However, the
difference between a filemenu and a selfilemenu is that the
selfilemenu always displays the same text (the Label),
regardless of what was last selected. The exception to this is
if the selfilemenu is "Editable", in which case it displays the
last selected option.

The attributes of a selfilemenu are the same as for a
filemenu.

Enable condition

Vnmr command iplanType = 0 planValue='$VALUE'
setgplan('$VALUE')

Menu source $VALUE=sqdir+'/plans'

Menu type file

Show dot files yes

530 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Shimbutton

This button is typically used to adjust the shims. It can be
used for any numerical Vnmr or status parameter.

A shimbutton displays a text (the "Label"), the current value
of the parameter, and a stepsize. The parameter value is
adjusted in steps by clicking the mouse buttons: left and
right mouse button to increase and decrease the parameter
value, respectively. The value can be entered directly by
holding the shift key while clicking the value with the left
mouse button. The stepsize can be changed by clicking the
middle mouse button (goes through 3 values), or a new
stepsize can be entered by holding the shift key while
clicking the middle mouse button.

The attributes of a shimbutton are:

• Vnmr variables

• Value of item

• Label

• Vnmr command

• Status variable

• Limits parameter

• Min allowed value

• Max allowed value

• Pointy style

• Rocker style

• Arrow feedback

• Arrow color

• Values wrap around

Example:

Attribute Value

Vnmr variables

Value of item

Label Z0

Vnmr command setshim ('Z0',$VALUE)

Status parameter Z0

Limits parameter Z0

Min allowed value

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 531

Shimset

The shimset element displays an entire set of shim buttons,
corresponding to the shim hardware.

Figure 15 Shimset

The attributes of a shimset are:

• Border type

• Freeze layout

• Vnmr shim set parameter

• Vnmr shim set value

• Shim setting command

• Status parameter for shim

• Vnmr variables for shim

• Vnmr expression for shim

Max allowed value

Pointy style False

Rocker style True

Arrow feedback True

Arrow color GraphForeground

Values wrap around False

532 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Status button

A status button displays a popup window that shows the
temporal change in a given parameter.
.

The attributes of a statusbutton are:

• Status Title

• Chart Window Title

• Status Color

• Chart Max Points

• Status Variable

• Display Value

• Vnmr variables

• Min value

• Value of item

• Max value

• Vnmr command

• Chart Show Range

• Vnmr command2

• Chart Background Color

• Chart Foreground Color

Example of the FID shim button.

Attribute Value

Status Title FID Shim

Status Color fg

Status Variable

Vnmr variables fidarea

Value of item $VALUE=fidarea

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 533

Textfile

The textfile window displays the text file corresponding to
the file path value. The file contents can change and the
display updates whenever a file name variable updates. For
example, if n1 is listed as a file name variable, setting n1 =
n1 will update the display.

The attributes of a textfile are:

• File name variables

• Value of file path

• Vnmr command

• Enable condition

• Editable

• Wrap lines

Vnmr command fid_scan

Vnmr command2 aa('exit FID shim')

Chart Window Title FID Shim area

Chart Max Points 200

Display Value no

Min value 0

Max value 1000

Chart Show Range True

Chart Background Color StdPar

Chart Foreground Color StdPar

534 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Creating a New Panel

This section describes how to create a new VnmrJ panel that
will appear in the Parameter Panel area.

Writing commands

The panel editor uses the MAGICAL command syntax and a
special variable, $VALUE, which is a local variable for each
attribute associated with a panel element.

The variable, $VALUE, holds the value of the entry in an
entry field. The value in the entry field may be a real or
string value, the output evaluation of a boolean expression
(1, or 0), or the result from the evaluation of an expression.
A string variable, in an expression, is set in single quotes,
for example: p1pat = '$VALUE'. Other local panel variables
are $SHOW and $ENABLE. See Table 59 on page 508.

Creating a new panel layout

A new layout is created using either a blank panel or an
existing layout that is similar to the required new panel. Use
an existing layout (existing user layouts are located in
~/vnmrsys/templates/layout) by copying an existing user
layout and giving it a new name or by copying an existing
system layout to the user directory and renaming the copied
layout. An example:

cp -r /vnmr/imaging/templates/layout/gems
~/vnmrsys/templates/layout/mygems

Load the protocol, pulse sequence, and/or parameter set that
will use the new layout.

1 Set seqfil or layout='mygems'.

The current panels are edited if seqfil or layout is not
set to the new name.

2 Open the panel editor:

a Click Edit on the main menu.

b Select Parameter Pages.

3 Modify any page.

4 Double click within a page or select the tab to the left.
The selected page border is highlighted in yellow.

5 Click the Save button and save the page.

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 535

Save the entire folder if new pages were created:

1 Select the folder by double- clicking in the area outside
the page grid.

Nothing is highlighted in yellow and at the bottom of the
panel editor window, the Save button is followed by the
word Folder and an entry field.

2 Click the Save button.

The folders (three for liquids and four for imaging) must be
named: Start, Acquire, Process, Image (imaging only), and
LC/MS (LC- NMR only and uses the file LcMs.xml). Arbitrary
names cannot be used. The name of the file that governs the
Start folder is always sample.xml, the Acquire folder
acq.xml, the Process folder proc.xml, and for the fourth
folder in the imaging interface aip.xml (advanced imaging
processing).

Varian standard imaging pages use the following convention:

• Pages in the Start folder start with samp

• Pages in the Acquire folder with acq

• Pages in the Process folder with proc

• Pages in the Image folder with aip

Press the Clear button outside the current page to delete all
pages in the current folder. Click the Abandon button to
reload the folder and pages from disk before clicking the
Save button if the Clear button is clicked by error. See
“VnmrJ Data Files” on page 440.

Creating a new page

1 Select Show all elements in the Locator.

2 Find the page element.

3 Drag the page element into the tab list to the left of the
panels in the appropriate folder.

The New Page appears as the tab on the left.

4 Change the size of the page by using one of the following:

• The mouse buttons and clicking on a corner and
dragging the page to a new size.

• The ctrl- arrow keys to resize the page.

• Type in values for size W(width) and H(height).

536 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Defining and populating a page

1 Save the page.

Select the entire page by double- clicking somewhere
within the page frame, but not on any of the elements
within the page. The entire page frame is highlighted in
yellow. At the bottom of the panel editor window, the
name of the page is shown in an entry field to the right
of the Save button.

2 Click the Save button and save the page.

The keyword Page appears between the Save button and
the entry field. Use either the original name (already
shown) or enter a new name. The page Type is provided
for refining a search of pages for future use.

Undo any changes made since the most recent save by
clicking the Load button to reload the file that is saved on
disk.

The Clear button deletes the current page in the folder. Click
the Abandon button to reload the page from the disk before
clicking the Save button or closing the editor if the Clear
button is clicked by mistake.

Saving and retrieving a panel element

Save and retrieve a panel element for use in a different
panel as follows:

1 Double- click an element.

The Save button is followed by the element type and an
entry field for specifying the name of the saved element.

2 Enter a name and press Enter.

Saving a group saves the group and all elements within the
group.

3 Set the element type from the menu (acquisition,
advanced, basic, display, imaging, plotting, processing, and
sample) for easy Locator search.

4 To retrieve a saved element, use the Locator to find the
element (try sorting alphabetically by name or by type)
and drag it on to the required page.

5 Saving an individual element is merely a tool to save and
retrieve an element for use in a different panel.

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 537

Files associated with panels

See Table 60 for panels and locations.

The panel search path is defined in Applications... dialog box
in the Edit menu, in directories allowed by the VnmrJ
administrator under appdir. The default is in the user's
home directory in vnmrsys/templates/layout, then
optionally an application- dependent directory (e.g.
/vnmr/imaging/templates/layout), and finally
/vnmr/templates/layout.

Panels are first searched for in the pulse- sequence directory,
then in the default directory. If the file DEFAULT exists in
the pulse sequence or layout directory and has contents set
default default_name, an additional default directory of
default_name will be searched.

Table 60 Panels and Locations

Panel owner Panel Location Comment

VnmrJ Spectroscopy /vnmr/templates/layout Named according to the pulse
sequence name seqfil and
used by all interfaces. Vertical
panels are in the "toolPanels"
subdirectory.

 Imaging /vnmr/imaging/templates/layout Imaging panels determined by
the VnmrJ parameter layout.
Vertical panels are in the
"toolPanels" subdirectory.

 LC-NMR /vnmr/lc/templates/layout LC-NMR panels not shared
with the experimental
interface. Vertical panels are in
the "toolPanels" subdirectory.

User user defined ~user/vnmrsys/templates/layout User panels named according
to the pulse-sequence name or
layout.

User user defined groups ~user/vnmrsys/VnmrJ/panelitems User groups of choosable
name to be used on any user
panel.

538 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Search path examples:

Gems panels in the imaging interface:

• ~/vnmrsys/templates/layout/gems

• /vnmr/imaging/templates/layout/gems

• /vnmr/templates/layout/gems

• ~/vnmrsys/templates/layout/default

• /vnmr/imaging/templates/layout/default

• /vnmr/templates/layout/default

COSY panels in the walkup interface, with a DEFAULT file
of set default default2d.

• ~/vnmrsys/templates/layout/COSY

• /vnmr/walkup/templates/layout/COSY

• /vnmr/templates/layout/COSY

• ~/vnmrsys/templates/layout/default2d

• /vnmr/walkup/templates/layout/default2d

• /vnmr/templates/layout/default2d

• ~/vnmrsys/templates/layout/default

• /vnmr/walkup/templates/layout/default

• /vnmr/templates/layout/default

Panel elements and groups are saved in
templates/VnmrJ/panelitems in either vnmrsys or /vnmr.

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 539

Sizing panels

The panel size is determined by the number of pixels on the
page when the page is created. Scroll bars appear
automatically if the panel size is reduced and all the
elements in the panel cannot be displayed. Scroll bars also
appear automatically when the text is too long to be
displayed in elements that support scroll bars. The Textfile
element is an example. Some elements that contain text do
not support scroll bars and display a portion of the text
with an "…" to indicate that not all the text is displayed.

The default environment variable setting for VnmrJ is
squish=1.0 to maintain the size of the font when VnmrJ is
resized. Set VnmrJ to automatically resize the fonts as
follows:

1 Log in as the system administrator, typically vnmr1.

2 Open a terminal window.

3 Enter cd /vnmr/bin

4 Enter cp VnmrJ VnmrJ.backup

Edit the /vnmr/bin/VnmrJ script and set the parameter
squish=0.5 to automatically resize the fonts. Use vi or
any ASCII text editor provided with the operating system.

5 Save the change and exit the editor.

6 Restart VnmrJ to make VnmrJ read the new value of the
parameter.

540 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Panel Style Guidelines

Below are some hints and guidelines that will help you to
create panels that are clear, readable and are consistent with
the existing set of parameter panels. Examples are shown to
illustrate common mistakes and possible improvements.

Structuring

You may want to give your panel a bit of (sub-)structure by
using, for example, etched group borders and group titles:

Figure 16 Less structured panel (top) and a panel with "etched" group
borders and titles (bottom)

Alignment

Align items on a panel wherever possible to help maintain
clarity and make the panel easy to read. Alignment should
be maintained on both left- and right- hand edges of panel
labels and widgets. Try to align all units horizontally as well.
Vertical alignment (of groups, titles etc.) is often more
difficult to achieve other than at the very top of a panel. See
Figure 16.

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 541

Commonly, a minimum distance of 10 units between items
on a panel and (etched, raised, or lowered) group borders
should be kept.

Figure 17 Sloppy alignment and widgets too near to the left group border
(left) and improved alignment and distances (right)

Sizes

Keep the number of different vertical sizes of labels, buttons,
or menus, etc. to a minimum – preferrably, use only one
size. Having too many sizes will make proper alignment
difficult. The typical size used for most entries, labels, and
buttons is 20.

Figure 18 Too many label and entry sizes (left) and only one size (right)

Font size

Avoid choosing the size of text labels (and textmessages,
dropdown menus, etc.) such that it just matches (or is
smaller than) the size of the text. This will lead to an
undesirable (and frequently unnecessary) automatic scaling
down of the text font size, making the text less readable.

542 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Figure 19 Too small label size with respect to its text length (left,center),
improvement by resizing the indicated labels by 5-10 units
each (right)

Text, labels

Avoid adding colons at the end of a parameter description –
they are not necessary. Use a capital letter at the beginning
of each entry. At least try to be consistent throughout the
panel.

Figure 20 Differences in upper/lower case labels, some labels but not all
using colons (left) and cleaned-up panel (right)

Colors

Do not to use too many colors on a panel. Use colors only
sparingly to highlight items – red, in general, should be
avoided unless used only for warnings and/or "dangerous"
buttons such as "Delete".

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 543

Figure 21 Use of large red font for a normal title (left) and "milder"
version (right).

IUPAC units

Use correct scientific/SI/IUPAC units and abbreviations
wherever possible. Correct units: "s", "ms", "Hz", "kHz".
Incorrect: "sec", "msec", "hz", "KHz".

Decimal places

Watch out how many decimal places make sense for a
particular entry. For example, in Figure 18. an 'entry' item is
used to display (and set) the value of a real (floating- point)
parameter gtz. The actual value of gtz is 1.6 ms but with
"Decimal Places" set to "0", the displayed value gets rounded
to 2 ms. Here, setting "Decimal Places" to an empty string
would be more appropriate – this allows any necessary
decimals to be displayed. Similarly, allowing too many
decimal places (for example, 4 and more) is often
unnecessary as these may be invisible anyway because of the
size of the entry.

544 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Figure 22 Entry with too few (0) decimal places (left) and correct (1 or
leaving decimals undefined) decimal places (right)

Table 61 Common measures and properties on default VnmrJ 3 panels

Attribute Size in units/pixels

Grid size 5

Horizontal distance of panel
items to the left and right
group borders

10

Size of Label, entry, and
buttons

20

Horizontal distance between
two adjacent groups, distance
to left panel border

5

Text General text is usually in font style "Label1"
(default blue). Highlighted text may be
formatted with "Label3" (default brown) or,
when really important, in "Label2" (default
red).

Groups Most large groups on parameter panels are of
the type "Titled" and have an Etched border.
Title font style: "Heading2" (blue)

Buttons Buttons are generally labelled with font style
"Label3" (default brown) or, for large, very
often used convenience buttons, "Heading4"
(default brown).

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 545

Graphical Toolbar Menus

This section describes how to edit the graphical toolbar
menus.

Editing the Toolbar menu

The graphics toolbar menu is invoked with the command
menu(filename) and filename is the name of a file in the
directory menujlib that exists in any of the following
locations:

• /vnmr

• $HOME/vnmrsys

• any appdir accessible path

Menus and toolbars are a macro containing other macros.
The definitions are plain text files and can be edited using
vi or any ASCII text editor supplied with the operating
system.

Graphics toolbar parameters

Each button displayed in the graphics toolbar menu is
specified by three attributes that are set by the index of
three arrayed global parameters: micon, mlabel, and
mstring. The following global parameters are associated with
the Graphic Toolbar menus:

Parameter Description

micon Saves the name of the GIF file associated with the button in
micon[i]. This parameter is typically arrayed with one icon for
each button and is set when a menu is called. A noicon.gif is
used if an icon does not exist.

mlabel Stores the tooltip for a menu button. This parameter is typically
arrayed with one tooltip for each button in the menu. This
parameter is set whenever a menu is called.

 mlabel[i] contains the tooltip for the ith button.

mstring Stores command or macro strings to be executed when a VnmrJ
menu button is clicked. Usually the mstring parameter is
arrayed with a string for each button in the menu. The string can
be any string of commands that can appear in a macro or on the
command line. This parameter is set whenever a menu is called.

546 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Icons

VnmrJ icons available to all users are .gif files located in:
/vnmr/iconlib

Size all button icons to 24 × 24 pixels. Use any graphics
editor that can create a .gif file.

Menu file description example, dconi

The following is a line by line description of the dconi menu
file.

The line numbers in the listing for the dconi menu file are
for reference only and are not part of the file.

The header contains comments and file history. It is not
required but it is a good practice to provide this or similar
information when creating new or editing existing menu
files.

Line 1 is the first line of the menu and checks the graphics
mode display.

Lines 2 through 9 establish the conditions for displaying the
dconi menu.

Lines 10 through 12 initialize the mlabel, micon, and
mstring to null strings to clear any traces of a previous
menu.

Button 1

Lines 14 through 22 establish the first button ($vjm=1) as a
toggle between the cursor and box modes (crmode='b'). The
temporary parameter $vjm is used as button index.

Line 16 sets the label for the button to Cursor
(mlabel[$vjm]='Cursor') and the icon to 2D1cur.gif
(micon[$vjm]='2D1cur.gif') when the cursor operation is
in the box mode (crmode='b').

 The following rules apply:
— No new lines (that is, carriage returns) in the text string.

 — Single quotes in the text string must be replaced by reverse
single quotes (`...`) or by the escape sequence back slash with
single quote (\'...).

 — The length for the text string is subject to a maximum. A menu
string can simply contain the name of a macro.

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 547

Clicking on the button changes the button to Box
(mlabel[$vjm]='Box') and the icon to 2D2cur.gif
(micon[$vjm]='2D2cur.gif') when it is in the cursor mode

Line 22 specifies the command to toggle dconi between
modes:
mstring[$vjm]='dconi('toggle')'

Button 2

Line 24 through 28 establish the next button ($vjm=$vjm+1)
and the mlabel, micon, and mstring strings are set to define
the name, icon, and VnmrJ command string.

Buttons 3 through 7

Line 29 through 53 increment the index to the next buttons
($vjm=$vjm+1) and the mlabel, micon, and mstring strings
are set to define the name, icon, and command string.

Button 8

The button (lines 54 through 57) is similar to buttons 2
through 7 with the inclusion of conditional statement in the
parameter mstring on line 56.

Buttons 9 through 11

The buttons (lines 59 through 72) are similar to buttons 2
through 8.

Buttons 12 and 13

Line 74 is the if part of an if then else endif condition
that reads the value of the parameter appmode.

Lines 75 through 84 are the then part of the if then else
endif statement.

Lines 76 through 83 specify button attributes for display
scaling if the statement in line 74 is true.

Line 85 is the else part of an if then else endif
statement.

Lines 86 through 95 specify button attributes for display
scaling if the statement in line 74 is false.

Line 96 is endif part of an if then else endif condition.

548 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

Button 14

This button (lines 98 through 101) is similar to buttons 2
through 7.

Button 15

This button (lines 103 through 108) is optionally displayed
depending on the value of the parameter appmode. The
construct is similar to Button 12 without the else statement.

Button 16

The return button action (lines 103 through 108) is
determined by the conditions set in lines 113, 116, and 119
as part of a nested set of if then else endif statements.

Line 122 is the endif statement associated with the initial
if then else on lines 2 through 9.

"@(#)dconi 5.9 03/08/07 Copyright (c) 1991-2007 Varian,
Inc. All Rights Reserved."

" ********************************* "

" **** M E N U : D C O N I **** "

" ********************************* "

Line
number

1
graphis:$vjmgd

2
if (($vjmgd <> 'dconi') and ($vjmgd <> 'dpcon')

3
and ($vjmgd <> 'dcon') and ($vjmgd <> 'ds2d')) then

4
 if (lastmenu<>'') then

5
 menu(lastmenu) lastmenu=''

6
 else

7
 menu('display_2D')

8
 endif

9
else

10
mlabel=''

11
mstring=''

12
micon=''

13

14
$vjm=1

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 549

15
if (crmode = 'b') then

16
 mlabel[$vjm]='Cursor'

17
 micon[$vjm]='2D1cur.gif'

18
else

19
 mlabel[$vjm]='Box'

20
 micon[$vjm]='2D2cur.gif'

21
endif

22
mstring[$vjm]='dconi('toggle')'

23

24
$vjm=$vjm+1

25
mlabel[$vjm]='Show Full Spectrum'

26
micon[$vjm]='2Dfull.gif'

27
mstring[$vjm]='mfaction(\'mfzoom\',0)'

28

29
$vjm=$vjm+1

30
mlabel[$vjm]='Zoom in'

31
micon[$vjm]='1Dexpand.gif'

32
mstring[$vjm]='mfaction(\'mfzoom\',1)'

33

34
$vjm=$vjm+1

35
mlabel[$vjm]='Zoom out'

36
micon[$vjm]='1Dzoomout.gif'

37
mstring[$vjm]='mfaction(\'mfzoom\',-1)'

38

39
$vjm=$vjm+1

40
mlabel[$vjm]='Zoom mode'

41
mstring[$vjm]='setButtonMode(2)'

42
micon[$vjm]='ZoomMode.gif'

43

44
$vjm=$vjm+1

45
mlabel[$vjm]='Pan & Stretch Mode'

46
mstring[$vjm]='setButtonMode(3)'

47
micon[$vjm]='1Dspwp.gif'

48

49
$vjm=$vjm+1

50
mlabel[$vjm]='Trace'

550 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

51
mstring[$vjm]='dconi('trace')'

52
micon[$vjm]='2Dtrace.gif'

53

54
$vjm=$vjm+1

55
mlabel[$vjm]='Show/Hide Axis'

56
mstring[$vjm]='if(mfShowAxis=1) then mfShowAxis=0 else
mfShowAxis=1 endif repaint'

57
micon[$vjm]='1Dscale.gif'

58

59
$vjm=$vjm+1

60
mlabel[$vjm]='Projections'

61
mstring[$vjm]='newmenu('dconi_proj') dconi('restart')'

62
micon[$vjm]='2Dvhproj.gif'

63

64
$vjm=$vjm+1

65
mlabel[$vjm]='Redraw'

66
mstring[$vjm]='dconi('again')'

67
micon[$vjm]='recycle.gif'

68

69
$vjm=$vjm+1

70
mlabel[$vjm]='Rotate'

71
mstring[$vjm]='if trace='f2' then trace='f1' else
trace='f2' endif dconi('again')'

72
micon[$vjm]='2Drotate.gif'

73

74
if appmode='imaging' then

75

76
$vjm=$vjm+1

77
mlabel[$vjm] = 'Scale +7%'

78
mstring[$vjm] = 'vs2d=vs2d*1.07 dconi('redisplay')'

79
micon[$vjm]='2Dvs+20.gif'

80
$vjm=$vjm+1

81
mlabel[$vjm] = 'Scale -7%'

82
mstring[$vjm] = 'vs2d=vs2d/1.07 dconi('redisplay')'

83
micon[$vjm]='2Dvs-20.gif'

84

85
else

Panels, Toolbars, and Menus 7

VnmrJ 4 User Programming 551

86

87
$vjm=$vjm+1

88
mlabel[$vjm] = 'Scale +20%'

89
mstring[$vjm] = 'vs2d=vs2d*1.2 dconi('again')'

90
micon[$vjm]='2Dvs+20.gif'

91
$vjm=$vjm+1

92
mlabel[$vjm] = 'Scale -20%'

93
mstring[$vjm] = 'vs2d=vs2d/1.2 dconi('again')'

94
micon[$vjm]='2Dvs-20.gif'

95

96
endif

97

98
$vjm=$vjm+1

99
mlabel[$vjm]='Phase2D'

100
mstring[$vjm]='newmenu('dconi_phase') dconi('trace')'

101
micon[$vjm]='1Dphase.gif'

102

103
if appmode<>'imaging' then

104
 $vjm=$vjm+1

105
 mlabel[$vjm]='Peak Picking'

106
 mstring[$vjm]='newmenu('ll2d') dconi('restart')'

107
 micon[$vjm]='2Dpeakmainmenu.gif'

108
endif

109

110
$vjm=$vjm+1

111
mlabel[$vjm]='Return'

112
micon[$vjm]='return.gif'

113
if (lastmenu<>'') then

114
 mstring[$vjm]='menu(lastmenu) lastmenu='''

115
else

116
 if appmode='imaging' then

117
 mstring[$vjm]='menu('main')'

118
 else

119
 mstring[$vjm]='menu('display_2D')'

120
 endif

121
endif

552 VnmrJ 4 User Programming

7 Panels, Toolbars, and Menus

122
endif

553

Agilent VnmrJ 4 User Programming
Reference Guide

Agilent Technologies

Appendix A
Status Codes

Status Codes 554

554 VnmrJ 4 User Programming

A Status Codes

Status Codes

Codes marked with a double asterisk (**) apply only to
Whole Body Imaging systems.

Table 62 Acquisition Status Codes

Done codes: 11. FID complete

12. Block size complete (error code indicates bs number
completed)

13. Soft error

14. Warning

15. Hard error

16. Experiment aborted

17. Setup completed (error code indicates type of setup
completed)

101. Experiment complete

102. Experiment started

Error codes: Warnings

101. Low-noise signal

102. High-noise signal

103. ADC overflow occurred

104. Receiver overflow occurred*

Soft errors

200. Maximum transient completed for single precision data

201. Lost lock during experiment (LOCKLOST)

Spinner errors:

301. Sample fails to spin after 3 attempts to reposition
(BUMPFAIL)

302. Spinner did not regulate in the allowed time period
(RSPINFAIL)

303. Spinner went out of regulation during experiment
(SPINOUT)

395. Unknown spinner device specified (SPINUNKNOWN)

396. Spinner device is not powered up (SPINNOPOWER)

Status Codes A

VnmrJ 4 User Programming 555

397. RS-232 cable not connected from console to spinner
(SPINRS232)

398. Spinner does not acknowledge commands
(SPINTIMEOUT)

VT (variable temperature) errors:

400. VT did not regulate in the given time vttime after being set

401. VT went out of regulation during the experiment (VTOUT)

402. VT in manual mode after auto command (see Oxford
manual)

403. VT safety sensor has reached limit (see Oxford manual)

404. VT cannot turn on cooling gas (see Oxford manual)

405. VT main sensor on bottom limit (see Oxford manual)

406. VT main sensor on top limit (see Oxford manual)

407. VT sc/ss error (see Oxford manual)

408. VT oc/ss error (see Oxford manual)

495. Unknown VT device specified (VTUNKNOWN)

496. VT device not powered up (VTNOPOWER)

497. RS-232 cable not connected between console and VT
(VTRS232)

498. VT does not acknowledge commands (VTTIMEOUT)

Sample changer errors:

501. Sample changer has no sample to retrieve

502. Sample changer arm unable to move up during retrieve

503. Sample changer arm unable to move down during retrieve

504. Sample changer arm unable to move sideways during
retrieve

505. Invalid sample number during retrieve

506. Invalid temperature during retrieve

507. Gripper abort during retrieve

508. Sample out of range during automatic retrieve

509. Illegal command character during retrieve*

510. Robot arm failed to find home position during retrieve*

511. Sample tray size is not consistent*

Table 62 Acquisition Status Codes

556 VnmrJ 4 User Programming

A Status Codes

512. Sample changer power failure during retrieve*

513. Illegal sample changer command during retrieve*

514. Gripper failed to open during retrieve*

515. Air supply to sample changer failed during retrieve*

525. Tried to insert invalid sample number*

526. Invalid temperature during sample changer insert*

527. Gripper abort during insert*

528. Sample out of range during automatic insert

529. Illegal command character during insert*

530. Robot arm failed to find home position during insert*

531. Sample tray size is not consistent*

532. Sample changer power failure during insert*

533. Illegal sample changer command during insert*

534. Gripper failed to open during insert*

535. Air supply to sample changer failed during insert*

593. Failed to remove sample from magnet*

594. Sample failed to spin after automatic insert

595. Sample failed to insert properly

596. Sample changer not turned on

597. Sample changer not connected to RS-232 interface

598. Sample changer not responding*

Shimming errors:

601. Shimming user aborted*

602. Lost lock while shimming*

604. Lock saturation while shimming*

608. A shim coil DAC limit hit while shimming*

Autolock errors:

701. User aborted (ALKABORT)*

702. Autolock failure in finding resonance of sample
(ALKRESFAIL)

703. Autolock failure in lock power adjustment
(ALKPOWERFAIL)*

Table 62 Acquisition Status Codes

Status Codes A

VnmrJ 4 User Programming 557

704. Autolock failure in lock phase adjustment
(ALKPHASFAIL)*

705. Autolock failure, lost in final gain adjustment
(ALKGAINFAIL)*

Autogain errors

801. Autogain failure, gain driven to 0, reduce pw (AGAINFAIL)

Hard errors

901. Incorrect PSG version for acquisition

902. Sum-to-memory error, number of points acquired not equal
to np

903. FIFO underflow error (a delay too small?)*

904. Requested number of data points (np) too large for
acquisition*

905. Acquisition bus trap (experiment may be lost)*

SCSI errors:

1001. Recoverable SCSI read transfer from console*

1002. Recoverable SCSI write transfer from console**

1003. Unrecoverable SCSI read transfer error*

1004. Unrecoverable SCSI write transfer error*

Host disk errors:

1101. Error opening disk file (probably a UNIX permission
problem)*

1102. Error on closing disk file*

1103. Error on reading from disk file*

1104. Error on writing to disk file*

RF Monitor errors:

1400. An RF monitor trip occurred but the error status is OK **

1401. Reserved RF monitor trip A occurred **

1402. Reserved RF monitor trip B occurred **

1404. Excessive reflected power at quad hybrid **

1405. STOP button pressed at operator station **

1406. Power for RF Monitor board (RFM) failed **

1407. Attenuator control or read back failed **

Table 62 Acquisition Status Codes

558 VnmrJ 4 User Programming

A Status Codes

1408. Quad reflected power monitor bypassed **

1409. Power supply monitor for RF Monitor board (RFM)
bypassed **

1410. Ran out of memory to report RF monitor errors **

1411. No communication with RF monitor system **

1431. Reserved RF monitor trip A1 occurred on observe channel
**

1432. Reserved RF monitor trip B1 occurred on observe channel
**

1433. Reserved RF monitor trip C1 occurred on observe channel
**

1434. RF Monitor board (PALI/TUSUPI) missing on observe
channel **

1435. Excessive reflected power on observe channel **

1436. RF amplifier gating disconnected on observe channel **

1437. Excessive power detected by PALI on observe channel **

1438. RF Monitor system (TUSUPI) heartbeat stopped on observe
channel **

1439. Power supply for PALI/TUSUPI failed on observe channel
**

1440. PALI asserted REQ_ERROR on observe channel (should
never occur) **

1441. Excessive power detected by TUSUPI on observe channel
**

1442. RF power amp: overdrive on observe channel **

1443. RF power amp: excessive pulse width on observe channel
**

1444. RF power amp: maximum duty cycle exceeded on observe
channel **

1445. RF power amp: overheated on observe channel **

1446. RF power amp: power supply failed on observe channel **

1447. RF power monitoring disabled on observe channel **

1448. Reflected power monitoring disabled on observe channel
**

1449. RF power amp monitoring disabled on observe channel **

Table 62 Acquisition Status Codes

Status Codes A

VnmrJ 4 User Programming 559

1451. Reserved RF monitor trip A2 occurred on decouple channel
**

1452. Reserved RF monitor trip B2 occurred on decouple channel
**

1453. Reserved RF monitor trip C2 occurred on decouple channel
**

1454. RF Monitor board (PALI/TUSUPI) missing on decouple
channel **

1455. Excessive reflected power on decouple channel **

1456. RF amplifier gating disconnected on decouple channel **

1457. Excessive power detected by PALI on decouple channel **

1458. RF Monitor system (TUSUPI) heartbeat stopped on
decouple channel **

1459. Power supply for PALI/TUSUPI failed on decouple channel
**

1460. PALI asserted REQ_ERROR on decouple channel (should
never occur) **

1461. Excessive power detected by TUSUPI on decouple channel
**

1462. RF power amp: overdrive on decouple channel **

1463. RF power amp: excessive pulse width on decouple channel
**

1464. RF power amp: maximum duty cycle exceeded on decouple
channel **

1465. RF power amp: overheated on decouple channel **

1466. RF power amp: power supply failed on decouple channel **

1467. RF power monitoring disabled on decouple channel **

1468. Reflected power monitoring disabled on decouple channel
**

1469. RF power amp monitoring disabled on decouple channel **

1501. Quad reflected power too high **

1502. RF Power Monitor board not responding **

1503. STOP button pressed on operator's station **

1504. Cable to Operator's Station disconnected **

1505. Main gradient coil over temperature limit **

1506. Main gradient coil water is off **

Table 62 Acquisition Status Codes

560 VnmrJ 4 User Programming

A Status Codes

1507. Head gradient coil over temperature limit **

1508. RF limit read back error **

1509. RF Power Monitor Board watchdog error **

1510. RF Power Monitor Board self test failed **

1511. RF Power Monitor Board power supply failed **

1512. RF Power Monitor Board CPU failed **

1513. ILI Board power failed **

1514. SDAC duty cycle too high **

1515. ILI Spare #1 trip **

1516. ILI Spare #2 trip **

1517. Quad hybrid reflected power monitor BYPASSED **

1518. SDAC duty cycle limit BYPASSED **

1519. Head Gradient Coil errors BYPASSED **

1520. Main Gradient Coil errors BYPASSED **

1531. Channel 1 RF power exceeds 10s SAR limit **

1532. Channel 1 RF power exceeds 5min SAR limit **

1533. Channel 1 peak RF power exceeds limit **

1534. Channel 1 RF Amp control cable error **

1535. Channel 1 RF Amp reflected power too high **

1536. Channel 1 RF Amp duty cycle limit exceeded **

1537. Channel 1 RF Amp temperature limit exceeded **

1538. Channel 1 RF Amp pulse width limit exceeded **

1539. Channel 1 RF Power Monitoring BYPASSED **

1540. Channel 1 RF Amp errors BYPASSED **

1551. Channel 2 RF power exceeds 10s SAR limit **

1552. Channel 2 RF power exceeds 5 min SAR limit **

1553. Channel 2 peak RF power exceeds limit **

1554. Channel 2 RF Amp control cable error **

1555. Channel 2 RF Amp reflected power too high **

1556. Channel 2 RF Amp duty cycle limit exceeded **

1557. Channel 2 RF Amp temperature limit exceeded **

1558. Channel 2 RF Amp pulse width limit exceeded **

Table 62 Acquisition Status Codes

Status Codes A

VnmrJ 4 User Programming 561

1559. Channel 2 RF Power Monitoring BYPASSED **

1560. Channel 2 RF Amp errors BYPASSED **

Table 62 Acquisition Status Codes

562 VnmrJ 4 User Programming

A Status Codes

VnmrJ 4 User Programming 563

Index

Symbols

? (question mark) notation (UNIX), 410
. (single period) notation (UNIX), 408
.. (double period) notation (UNIX), 408
... notation (display template file), 476
.fdf file extension, 452
.fid file extension, 440
", 410
(semicolon) notation (UNIX), 407
* (asterisk) notation (display template), 476
/ notation (UNIX), 408
& (ampersand) notation (UNIX), 410
| (vertical bar) notation (UNIX), 410
~ (tilde) notation (UNIX), 408

Numerics

1D data file, 442
1D display, 448
1D Fourier transform, 448
2D data file, 449
2D FID display, 448
2D FID storage, 449
2D hypercomplex data, 442
2D phased data storage, 449
3D coefficient text file, 442
3D parameter set, 442
3D spectral data default directory, 441

A

abort current process (UNIX), 410
acquisition bus trap, 557
ADC overflow warning, 554
alias (UNIX), 408
ampersand (&) character, 410
ap command, 473
ap parameter, 473, 477
arraydim parameter, 448
arrayed experiment, 448
ASCII format, 440
asterisk (*) character, 410, 476
auto file, 442
Autogain, see automatic gain, 557
Autolock, see automatic lock, 556
automatic execution of macros, 470
automatic gain

errors, 557
automatic lock

errors, 556
automation file, 442
awc parameter, 480

awk command (UNIX), 409

B

background process (UNIX), 409
background processing, 412, 413
binary files, 440
binary information file, 442
block size complete, 554
bs parameter, 554
buffering in memory, 441

C

cat command (UNIX), 409
cd command (UNIX), 409
change current directory, 409
checksum of FDF file data, 457
chmod command (UNIX), 409
cmp command (UNIX), 409
coef file, 442
comparing two files (UNIX), 409
complex pair of FID data, 446
compressed data format, 460
compressed files, 453
Compressed-compressed data format, 460
concatenate and display files (UNIX), 409
config command, 465
conpar file, 465, 469
copying files (UNIX), 408, 409
cp command (UNIX), 408, 409
create command, 465, 468
creating

directories (UNIX), 409
FDF files, 457
new parameter, 465

curpar file, 441, 464
current experiment files, 441
current parameter tree, 464
current parameters text file, 441
current-type parameter tree, 464

D

data block, 442
data block header, 442
data buffers, 441
data directory, 441
data file, 441, 447, 448, 449
data file header, 442
data file in current experiment, 450
data portion of FDF file, 453

data transposition, 448
data.h file, 443
datablockhead structure, 445
datadir3d directory, 441
datafilehead structure, 443
date command (UNIX), 409
dc drift correction, 447
ddf command, 450
ddff command, 450
ddfp command, 450
DECch, DEC2ch, DEC3ch devices, 184
delay

parameter type, 464
deleting files (UNIX), 408
destroy command, 468
destroygroup command, 468
dg2 parameter, 474
Dgroup field, 469
Dgroup of a parameter, 467
diff command (UNIX), 409
differentially compare files (UNIX), 409
disk blocks, 443
disk cache buffering, 441
disk file errors, 557
display command, 467
displaying

date and time (UNIX), 409
FID file, 450
file headers, 450
memory usage, 450
part of file (UNIX), 409

done codes, 554
dp parameter, 440
ds command, 447
du command (UNIX), 409

E

ed command (UNIX), 409, 411
edit command, 411
editing

parameter attributes, 466
text files, 409

end of file (UNIX), 410
enumeral values of a parameter, 471
error codes, 554
error during acquisition, 554
expn directory file, 441
extr directory, 441
extracted 2D planes, 441

564 VnmrJ 4 User Programming

Index

F

f3 file, 442
FDF files

attach header to data file, 458
creating, 457
directory naming convention, 452
format, 453
header format, 453
magic number, 454
splitting data and header parts, 458
transformations of data, 457
why developed, 452

fdf files, 452
fdfgluer command, 458
fdfsplit command, 458
FID complete, 554
FID data, 446
fid file, 441, 447
fid file extension, 440
FID files, 440, 450, 484
FIFO underflow error, 557
file

binary format, 440
header of binary file, 440
protection mode (UNIX), 409
text format, 440

first point correction, 447
flag-type parameter, 464
flashc command, 461
flexible data format files. See FDF files, 452
flush command, 441, 447
format of weighting function, 481
forward slash notation (UNIX), 408
Fourier transform process, 447
fread command, 468
frequency-type parameter, 464
fsave command, 441, 468
ft command, 447
ft3d command, 442

G

gedit, 411
getvalue command, 466
Ggroup, 467, 469
global file, 464
global list, 184
global-type parameter tree, 464
grep command (UNIX), 409
gripper abort, 555
group of parameters, 467
groupcopy command, 468

H

half-transformed spectra, 448
head command (UNIX), 409
header of FDF file, 453
high-noise signal, 554
home directory for user (UNIX), 408

host disk errors, 557
hypercmplxbhead structure, 445

I

image file names, 452
imaginary component of FID data, 446
info directory, 442
integer-type parameter, 464
interferograms, 448

K

kill command (UNIX), 409

L

last used parameters text file, 441
Linux

shell, 411
tools, 406

list files in a directory (UNIX), 409
lists

global, 184
offset, 184

ln command, 408
log directory, 442
log files, 413, 442
login command (UNIX), 409
login procedure, 406
logout (UNIX), 410
lower shell script, 414
low-noise signal, 554
lp command (UNIX), 409
ls command (UNIX), 409

M

macro
automatic execution, 470

magic number, 454
mail command (UNIX), 409
makefid command, 484
man command (UNIX), 409
manual entry (UNIX), 409
matrix transposition, 449
maximum value of parameter, 469
memory usage by VNMR commands, 450
memsize parameter (UNIX), 441
mf command, 461
mfblk command, 461
mfdata command, 461
mftrace command, 461
minimum value of parameter, 469
mkdir command (UNIX), 408
move data in FID file, 461
move FID commands, 461
moving files into a directory, 409
mstat command, 450
multiple command separator (UNIX), 407
multiple trace or arrayed experiments, 448

multiuser protection, 412
mv command (UNIX), 408, 409

N

notation (UNIX), 410
np parameter, 557

O

OBSch device, 184
offset lists, 184
operating system, 406

P

package files, 408
pap command, 477
paramedit command, 466, 473
parameter

attributes, 469
create new parameter, 465
enumerable values, 471
maximum value, 469
minimum value, 469
template, 473
trees, 464
typical parameter file, 471
values, 471

parameters
accessing the value, 466
change type, 467
conditional display, 475
display field width, 476
display formats, 477
editing attributes, 466
get value, 466
protection bits, 467
step size, 469
types, 464

paramvi command, 466, 468, 473
parent directory (UNIX), 408
parmax parameter, 469
parmin parameter, 469
parstep parameter, 469
pattern scanning and processing (UNIX), 409
phase file in the current experiment, 450
phased 2D data storage, 449
phased spectral information, 441
phased spectrum, 447
phasefile file, 441, 447, 448, 449
phase-sensitive 2D NMR, 446
pipe, 410
pmode parameter, 441
print files (UNIX), 409
procdat file, 442
process status (UNIX), 409
processed-type parameter tree, 464
procpar file, 441, 452, 453, 464
procpar3d file, 442
protection bits, 467, 470

Index

VnmrJ 4 User Programming 565

prune command, 468
ps command (UNIX), 409
pulse-type parameter, 464
pw parameter, 557
pwd command, 409

Q

quadrature detection, 446
question mark (?) character, 410

R

read parameters from a file, 468
real component of FID data, 446
real-type parameter, 464, 467
receiver overflow warning, 554
reformatting data for processing, 459
reformatting spectra, 462
removing an empty directory (UNIX), 408
renaming a directory (UNIX), 408
renaming a file (UNIX), 408
reverse a spectrum, 462
reverse FID commands, 461
reverse order of data, 461
RF monitor errors, 557
rfblk command, 461
rfdata command, 461
rftrace command, 461
rm command (UNIX), 408
rmdir command (UNIX), 408
root directory (UNIX), 408
RS-232 cable, 555
rsapply command, 462
rt command, 485
run program in background, 410

S

sample changer
errors, 555

saved display file, 441
SCSI errors, 557
searching files for a pattern (UNIX), 409
semicolon () notation (UNIX), 407
send mail to other users (UNIX), 409
set3dproc command, 442
setdgroup command, 467
setenumeral command, 464, 467
setgroup command, 467
setlimit command, 467
setprotect command, 467
settype command, 467
setvalue command, 467, 484
shell command, 411, 412
shell programming, Linux and Unix, 414
shell scripts, 414
single period notation (UNIX), 408
sn file, 441
sort command (UNIX), 408
sort files (UNIX), 408

spell command (UNIX), 409
spelling errors check (UNIX), 409
spinner errors, 554
square brackets notation, 476
standard data format, 460
step size

parameters, 469
stored format of a parameter, 468
storing multiple traces, 448
string template, 473
string-type parameter, 464, 467
sum-to-memory error, 557
svfdf macro, 458
svib macro, 458
svsis macro, 458
Syntax for Controlling Parallel Channels, 130
system identification, 410
systemglobal-type parameter tree, 465

T

tabc command, 462
tail command (UNIX), 409
tape backup (UNIX), 408
tar command (UNIX), 408
tcapply command, 462
template parameters, 473
text file, 441
text format files, 440
textedit command (UNIX), 409, 411
tilde character notation (display

templates), 477
tilde character notation (UNIX), 408
total weighting vector, 480
transformations of FDF data files, 457
transformed complex spectrum storage

file, 441
transformed phased spectrum storage file, 441
transformed spectra storage files, 440
two periods notation (UNIX), 408
type of parameter, 467
types of parameters, 464, 469

U

uname command (UNIX), 410
units command (UNIX), 410
UNIX

commands, 407
shell, 411
text commands, 409

user-written weighting function, 480

V

values of a parameter, 471
vbg shell script (UNIX), 413
vertical bar notation (UNIX), 410
vi command (Linux and UNIX), 411
vi command (UNIX), 409
vi command (VNMR), 411

vi text editor, 466
VNMR

source code license, 443
Vnmr command (UNIX), 412
VnmrJ

background processing, 413
VT errors, 555
vttime parameter, 555

W

w command, 411
w command (UNIX), 410
warning error codes, 554
weighting function, 447, 480, 481
who is on the system (UNIX), 410
wildcard character (UNIX), 410
working directory (UNIX), 408
writing parameter buffers into disk files, 441
wtcalc function, 481
wtf file extension, 480
wtfile parameter, 480, 482
wtfile1 parameter, 480
wtfile2 parameter, 480
wtgen shell script, 480, 482
wti command, 480
wtlib directory, 480, 482
wtp file extension, 480

X

X channel, 446

Y

Y channel, 446

Z

zero fill data, 447
zip, 408

566 VnmrJ 4 User Programming

Index

© Agilent Technologies, Inc.

Printed in USA, 2013

G7446-90520

G7446-90520

Agilent Technologies

	VnmrJ 4 PDF Manuals Table of Contents
	Contents
	MAGICAL II Programming
	Working with Macros
	Writing a macro
	Executing a macro
	Transferring macro output
	Loading macros into memory

	Programming with MAGICAL
	Tokens
	Variable types
	Arrays
	Input arguments
	Name replacement
	Conditional statements
	Loops
	Macro length and termination
	Command and macro tracing

	Relevant VnmrJ Commands
	Spectral analysis tools
	Input/Output tools
	Regression and curve fitting
	Mathematical functions
	Creating, modifying, and displaying macros
	Miscellaneous tools

	Pulse-Sequence Programming
	Overview of Pulse-Sequence Programming
	Overview of pulse-sequence execution
	Compiling a pulse sequence with the PSG
	Troubleshooting a new pulse sequence
	Creating a parameter table for a new sequence
	C framework for pulse sequences
	Global PSG and real-time variables in multidimensional arrays
	Assigning transmitters and receivers
	Customizing the PSG software

	Pulse-Sequence Statements
	Creating a time delay
	Assigning transmitters and receivers to channels
	Transmitter pulses
	Pulsing channels simultaneously
	Setting quadrature phase shifts
	Setting small-angle phase shifts
	Controlling the frequency offset
	Controlling the transmitter power
	Explicit transmitter gating
	Transmitter blanking and unblanking
	The status statements
	Receiver gating
	Interfacing to external user devices

	Real-Time Control of Pulse Sequences
	Real-time integer variables and constants
	Calculating with real-time integer math
	Real-time loops and conditionals
	Real-time integer tables
	The format of a table file

	Shaped Pulses and Waveforms
	Executing shaped pulses
	Calculation of shaped pulses
	Programmed waveforms for decoupling
	Waveforms with an automatic frequency offset
	Using spinlock pulses
	Calculation of programmed waveforms
	Calculating gradient shapes
	Statements that create shape, waveform and gradient files
	Waveform interpolation

	Programming for Acquisition Control
	Implicit acquisition
	Standard acquisition with the VNMRS digital receiver
	Setting the receiver phase
	Setting the receiver offset
	Programming explicit acquisition
	Windowed acquisition
	Acquisition with multiple FIDS

	Multidimensional NMR and Arrays
	Variables for nD dimensions
	Compressed arrays and nD dimensions
	Switchable loops for nD imaging experiments
	Arrayed data acquisition
	Managing arrays
	Multidimensional phases

	Syntax for Controlling Parallel Channels
	Synchronous Timing Syntax
	A parallelstart – parallelend Section
	Looping in Parallel Sections
	Allowed Statements and Calculation in a Parallel Section
	Programming the Receiver and Gradients
	The nowait Attribute
	Waveform Control with obsprgon-obsprgoff

	Parameters and Variables
	Categories of parameters and variables
	Statements used to handle parameters

	PSG Variables
	Global PSG Variables
	Imaging and Other Variables

	Pulse Sequence Output
	Output messages
	Pulse sequence display

	Setting the Amplitude, Phase, and Gate from Tables
	Gradient Control for PFG and Imaging
	Single-axis gradient control for spectroscopy
	Shaped gradients with nowait capability
	Creating a gradient table
	Controlling magic angle gradients
	Oblique and phase-encoded-oblique gradients for imaging
	Controlling slice-selective RF shaped pulses for imaging
	Controlling lock field correction

	Pulse Sequence Statement Reference
	Pulse Sequence Statements
	A
	C
	D
	E, F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

	Linux Level Programming
	Linux and VnmrJ
	Linux Reference Guide
	Command entry
	File names
	File handling commands
	Directory names
	Directory handling commands
	Text commands
	Other commands
	Special characters

	Linux Commands Accessible from VnmrJ
	Opening a text editor from VnmrJ
	Opening a shell from VnmrJ

	Background VNMR
	Running VNMR Command as a Linux background task
	Running VNMR processing in the background

	Shell Programming
	Shell variables and control formats
	Shell scripts

	Data backup under Linux
	General considerations
	Data backup on CDs/DVDs
	Installation of a second hard disk
	Data mirroring using VnmrJ tools
	Automatic data backup using rsync
	Backup on a second hard disk
	Backup on a remote mounted filesystem
	Backup on a remote computer via Secure Shell (ssh)

	Parameters and Data
	VnmrJ Data Files
	Binary data files
	Data file structures
	VnmrJ use of binary data files
	Storing multiple traces
	Header and data display
	Binary files in VnmrJ and byte order

	FDF (Flexible Data Format) Files
	File structures and naming conventions
	File format
	Header parameters
	Transformations
	Creating FDF files
	Splitting FDF files

	Reformatting Data for Processing
	Standard and compressed formats
	Compress or decompress data
	Move and reverse data
	Table convert data
	Reformatting spectra

	Creating and Modifying Parameters
	Parameter types and trees
	Tools for working with parameter trees
	Format of a stored parameter

	Modifying Parameter Displays in VNMR
	Display template
	Conditional and arrayed displays
	Output format

	Modules
	Creating modules
	Viewing modules parameters
	Module example—Och_adiabatic

	User-Written Weighting Functions
	Writing a weighting function
	Compiling the weighting function

	User-Written
	FID files

	User Space Customization
	Customize User Space with dousermacro
	Customizing Default Experiment Parameters using user<pslabel>
	Customizing Output - Plotting

	Panels, Toolbars, and Menus
	Parameter Panel, Toolbar, and Menu Properties
	Using the Panel Editor
	Starting the panel editor
	Editing existing panel elements
	Adding and removing panel elements
	Using the Item Editor
	Adding user-defined sampletags
	Saving panel changes
	Exiting the Panel Editor

	Panel Elements
	Element style
	Panel element attributes
	Panel elements
	Advanced panel elements

	Creating a New Panel
	Writing commands
	Creating a new panel layout
	Creating a new page
	Defining and populating a page
	Saving and retrieving a panel element
	Files associated with panels
	Sizing panels

	Panel Style Guidelines
	Graphical Toolbar Menus
	Editing the Toolbar menu
	Graphics toolbar parameters
	Icons
	Menu file description example, dconi

	Status Codes
	Status Codes

	Index

